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Fig. S1  Hierarchy of tools used for Baltic water quality management within NEST.  Examples 

of tools used at each level are indicated in parentheses.  Several levels of analysis and 

information delivery are involved in watershed management, each with their own requirements 

and levels of complexity appropriate to the task at hand.  Level of complexity and spatio-

temporal resolution tends to increase from left to right, as do the requirements of data and 

parameter estimation, and thus the level of uncertainty.  Balancing uncertainty against 

demands for information for each purpose is central to the multi-model approach, and 

comparison of different model approaches should lead to more robust management. 
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Model summaries 

 

NANI and NAPI toolbox 

Net anthropogenic nitrogen input (NANI) is calculated as the sum of four major components: 

atmospheric N deposition, fertilizer N application, agricultural N fixation, and net food and feed 

imports, which in turn are based on the balance of crop and animal N production and animal 

and human N consumption. Nitrogen in food, consumed in excess of supply within a watershed 

is assumed to be supplied by imports; supply in excess of demand represents an export from 

the watershed. We created a NANI toolbox that extracts and compiles the GIS data relevant for 

nutrient budgets from the RECOCA database at the watershed level (Hong et al. 2011). A 

similar accounting approach has also been applied to phosphorus, resulting in the calculation of 

NAPI (Net Anthropogenic Phosphorus Input) (Han et al. 2011; Russell et al. 2008). Hong et al. 

(2012) developed a new version of the NANI and NAPI toolbox, which incorporates all of these 

improvements for the Baltic Sea catchments. 

 

MESAW  

MESAW is a statistical model for source apportionment of riverine loads of pollutants 

developed by Grimvall & Stålnacke (1996). This model-approach uses non-linear regression for 

simultaneous estimation of e.g. source strength, i.e. export coefficients to surface waters, for 

the different specified land cover or soil categories and retention coefficients for pollutants in a 

watershed. MESAW provides the possibility to calculate source apportionment and retention of 

nutrients in a large drainage basin characterized as both data-rich and data-poor. Based on 

knowledge about water quality, as well as geographical information on factors such as land-

use, soil type, vegetation, lake area etc. the inputs and outputs are linked and the most likely 

sources are estimated. More specifically the model assumes that pollutant loads from a 

catchment area to a lake is a function of a "production term" related to land cover; emissions, 

and "reduction term" related to processes in the catchment that store or remove pollutants; 

retention. The MESAW model uses nutrient loads for a fixed time interval at each monitoring 



 

site as the response variable and the characteristics of basins as explanatory variables to 

estimate diffuse nutrient emissions through non-linear regression analysis. Examples of 

practical application of the MESAW model are given in Liden et al. (1999), Vassiljev & 

Stålnacke (2005),  Vassiljev et al. (2008) and Povilaitis et al (2012). 

 

The CSIM watershed model 

CSIM is a lumped, watershed-scale hydrological model based on the generalized watershed 

loading function model (GWLF, Haith and Shoemaker 1987). Variants of these models have 

been used successfully in several watersheds in the United States (Dai et al. 2000; Lee et al. 

2000, 2001; Schneiderman et al. 2002; Hong and Swaney 2004), and elsewhere (Ning et al. 

2002; Hristov et al. 2004; Smedberg et al. 2006; Sha et al. 2013) including the Baltic catchment 

(Mörth et al. 2007) to simulate seasonal and inter annual nutrient fluxes. The model divides 

each watershed into land use categories and considers the loads from each category 

separately. It is based on characteristic concentrations of inorganic and total N and P in surface 

and ground waters. 

 

DAISY and the development of a summary N loss function 

DAISY is a soil–plant–atmosphere system model designed to simulate water balance, heat 

balance, solute balance and crop production in agro-ecosystems subjected to various 

management strategies (Hansen et al. 1991; Abrahamsen and Hansen 2000). The soil-water 

balance includes water flow in the soil matrix as well as in macro-pores. It also includes water 

uptake by plants and a model for drainage to pipe drains. The solute-balance model simulates 

transport, sorption and N transformation processes including mineralization, immobilization, 

nitrification and denitrification, sorption of ammonium, uptake of nitrate and ammonium, and 

leaching of nitrate and ammonium. DAISY has been applied in several settings in Europe (e.g. 

Hansen et al. 2001; Heidmann et al. 2008). The model was calibrated to monitored root-zone N 

losses in mini catchments and to regional and national statistical data on crop yields. 



 

Quantifying the effect of eco-engineering approaches such as wetland formation was based on 

existing experimental data achieved by consulting national experts. Wetland retention was 

modeled as rate constants: restored wetlands 150 kg N ha-1 yr-1 and 0.7 kg P ha-1 yr-1, and 

constructed wetlands 300 kg N ha-1 yr-1 and 1.4 kg P ha-1 yr-1 . 

The high resolution data in the Baltic Sea database provide the DAISY model with sufficient 

information (including precipitation, temperature, soil types, farm types and levels of inputs of 

fertilizer and manure to crops) to simulate responses to the combinations of environmental 

conditions occurring over the entire region (more than 11,000 combinations), thus making it 

possible to describe the relationship between these drivers and nutrient leaching for the entire 

region over the period of available climate data (1995 – 2006). Based on the outcomes of these 

DAISY simulations, we identified the most significant variables by the use of covariance 

analysis with the parameters estimated using a least squares method (Rawlings 1988) and 

developed a multivariate statistical N leaching function for N losses from the root-zone of 

agricultural land in the Baltic Sea catchment. The function describes how agricultural 

management interacts with natural physiography and calculates agricultural N losses as a 

function of crop type (variable Crop, 14 different types possible), total N input to the crop 

including fertilizer, manure, N-fixation, N in seeds, and atmospheric N deposition (variable Total 

N, units kg N ha-1 yr-1), agricultural management (variable Farm, comprising three farm types 

(arable, intensive livestock, extensive livestock)), clay content in the topsoil (0-30 cm) (variable 

Clay, units weight percent) and carbon content in the topsoil (0-30 cm) (variable Clay, units 

weight percent): 

 R2 = 0 .91  

Where N-loss is N leaching from the root-zone (kg N ha-1 yr-1) and  - are model 

parameters. 

 

THE BALTCOST economic model 
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The BALTCOST model (Hasler et al. 2012) uses separate coastal load reduction targets for N 

and P for the 7 Baltic Sea sub-basins.  BALTCOST seeks to identify the minimum-cost 

combination of N and P abatement measures across the catchments that drain into a particular 

sea sub-basin, subject to satisfying the reduction targets for both N and P loads into that 

particular sea sub-basin. Input data are described in Table S1. 

Cost functions, effect functions, capacity constraints (which dictate the maximum extent to 

which abatement measures can be implemented) and catchment-scale nutrient retentions are 

calibrated using relevant combinations of data at national, watershed and 10 x 10 km resolution 

scale, thereby using the disaggregated data from the other components of the RECOCA 

project. The optimization problem can be formulated as minimizing the total cost of achieving 

the BSAP load reduction targets: 

 

  

 

subject to the following constraints for each ( ) of the seven Baltic sea sub-basins:  

 

  

 

where:  

SR indexes 7 sea sub-basins, 

DB indexes the drainage basins, 

m indexes the 6 abatement measures, 
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P indicates phosphorus, 

 denotes a drainage basin specific cost function associated with implementing 

measure m at the level , 

 denotes drainage basin specific effect functions for N and P, respectively, associated 

with implementing measure m at the level , 

��� is the nutrient load reduction target allocated to a particular sea region for nitrogen (N) and 

phosphorus (P), respectively, 

 is the drainage basin specific surface (s) and ground (g) water retention for nitrogen (N) 

and phosphorus (P), respectively,   

�� is a binary ‘switch’ variable associated with whether a measure m abates nutrient emissions 

on the land surface ��� = 1	 or directly into surface waters ��� = 0	. 

 

The BALTCOST model optimizes the implementation of abatement measures in each of the 

drainage basins to reach the targets specified for all the sea sub-basins. It is important to note 

that our approach utilizes retention coefficients and capacity constraints as well as cost and 

effect functions which are drainage basin specific – i.e. retention coefficients and capacity 

constraints were calibrated to each drainage basin using relevant combinations of data at 

national, watershed and 10 x 10 km resolution. The 6 measures and their effects are 

anticipated to be independent so that the effect of one measure will not be influenced by the 

implementation of another measure. This assumption holds for implementation of wastewater 

treatment and livestock reductions, but the other measures (catch crops, wetland restoration 

and fertiliser reductions) will be mutually dependent. This is a shortcoming of the model as 

applied, and further research is needed to estimate the effect of implementing these measures 

together, for instance the effects on nutrient reductions from wetlands when the nutrient 

transport through the wetland reduces, and the effect of catch crops when fertiliser application 

is reduced at the same time. These effects are not presently known. 
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The BALTCOST model can be used to estimate total abatement costs as well as marginal 

costs of abatement, as information about both total abatement costs and marginal costs is 

essential for policy advice. 
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Table S1    Data inputs to the BALTCOST model. 

Data Data source in and 

outside RECOCA 

Resolution and 

unit 

Purpose in BALTCOST 

Fertilizer use EU JRC, 

EUROSTAT, FADN, 

DAISY model outputs 

117 

watersheds, at 

10 x 10km 

resolution 

N and P inputs per ha in 

agriculture in baseline 

(2005) 

Fertilizer and manure 

use 

DAISY model outputs 117 

watersheds, at 

10 x 10km 

resolution 

Information about soil type-

specific fertilizer and 

manure inputs to crops 

Crop area EU JRC, CORINE, 

EUROSTAT, FADN 

117 

watersheds, at 

10 x 10km 

resolution 

Crop production in baseline 

(2005), used for estimating 

opportunity costs of wetland 

restoration, catch crops and 

the costs of fertilizer 

reductions. 

 

Used to estimate capacity 

limits for catch crops, as 

well as for fertilizer 



 

reductions. 

Livestock EUROSTAT, FADN 117 

watersheds, 

livestock 

numbers, 

cattle/pigs at 10 

x 10km 

resolution 

Pig and cattle production in 

baseline (2005), used for 

estimations of costs of 

livestock reductions. 

 

Used to estimations of 

capacity limits for 

reductions of livestock 

production. 

Human population HYDE 117 

watersheds, 

population 

number at 10 x 

10km resolution 

Distribution and density of 

population, linked to 

information about existing 

WWTPs to estimate 

potentials for improved 

treatment and connection to 

treatment facilities.  

 

Used to estimate capacity 

limits for improvements of 

wastewater treatment. 

Wastewater 

treatment plants 

(WWTPs) 

EUROSTAT, 

HELCOM & OECD 

117 watersheds Location, size and current 

level of treatment for 

existing WWTPs, used in 

conjunction with population 

distribution to determine 

maximum upgradable 



 

population size in each 

watershed. 

 

Table S1   continued 

Data Data source in and 

outside RECOCA 

Resolution and 

unit 

Purpose in BALTCOST 

Effects on leaching DAISY 117 

watersheds, per 

hectare at 10 x 

10km resolution 

Multivariate N leaching 

functions derived from a 

summary of the Daisy 

model outcomes, used to 

estimate N losses for each 

of the abatement 

measures. Soil retention.  

Retention MESAW 117 watersheds Data used to for modeling 

groundwater and surface 

water retention of Nitrogen. 

Soil types EUROSTAT, 

CORINE 

117 watersheds Used for estimating 

capacity for wetland 

restoration. Used to 

estimate effect on load 

reduction from fertilizer 

reduction and catch crops.  

Standard outputs, 

gross margins and 

prices for inputs and 

outputs in agriculture 

EUROSTAT NUTS 2 

resolution 

Used in conjunction with 

appropriate cost and profit 

functions to determine 

opportunity costs of 

reduced fertilizer 



 

applications or reduced 

livestock numbers 

Dietary intake and 

excretion of nitrogen 

and phosphorus by 

human population 

NANI/NAPI calculator 

toolbox 

National Used to calculate 

reductions in N and P loads 

at source following up-

grading of WWTPs 

Nitrogen and 

phosphorus excretion 

rates by cattle and 

pigs of different age 

classes 

NANI/NAPI calculator 

toolbox 

National Used to calculate 

reductions in N and P loads 

at source following 

reductions in livestock 

numbers 

Average crop yield by 

crop type 

EUROSTAT & 

Belarus Department 

of Agriculture 

National  Used to calculate 

opportunity cost of reduced 

fertilizer applications 

Electricity prices EUROSTAT & 

Russian electricity 

price report 

National Used to calculate 

wastewater treatment costs 

at national resolution 

Labor wage rates OECD & Russian 

wage rate report 

National  Used to calculate 

wastewater treatment costs 

at national resolution 

 

 

 

 

 

 


