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Material and Methods 
The RF algorithm contains three major steps: (1) n ‘bootstrap’ samples are drawn from the original training data 

with each sample comprising 70%, of the data. The remaining 30% of the data are used to estimate model errors 

and accuracy and later used for cross-validation; (2) an unpruned regression tree is grown for each of the 

bootstrap samples. However, rather than using the best split among all p predictors, only m of the p predictors 

are randomly sampled and the best split is chosen from among these m variables. And (3), the prediction is 

formed by averaging the output of the n trees. RF also produces scores measuring the relative importance of 

each explanatory variable on the response variable. This score is estimated by calculating the mean decrease in 

accuracy due to the permutation of one explanatory variable while leaving the others unchanged (Liaw and 

Wiener 2002). An overall measure of the mean squared errors (sum of squared residuals divided by number of 

trees) is also calculated within RF.  

Data 

Climate based variables 

Temperature and Precipitation 
We calculated the difference between projected and baseline yearly mean temperatures and precipitation for two 

RCP scenarios: RCP4.5 and RCP8.5 (van Vuuren et al., 2011), using four GCMs from the CMIP5 archive 

(Taylor et al. 2012) . The baseline period was 1969-1999 and the projected period was 2071-2100. These 

changes in temperature and precipitation were used to calculate the climate metrics necessary to compute the 

future (projected) AEZs (PAEZs). The GCMs we used, with their equilibrium climate sensitivity (ECS) and 

transient climate response (TCR) were: ACCESS1.3 (ECS= 3.54K, TCR= 1.64K) (Dix et al. 2013), CanESM2 

(ECS=3.69K, TCR=2.4K), IPSL_CM5A_LR (ECS= 4.13K,TCR=2K) and MIROC5 (ECS= 2.72K, TCR=1.5K) 

(Forster et al. 2013). These GCMs are representative of the range of climate sensitivities in the CMIP5 archive. 

The climate projections from each of the four GCMs were used independently in Random Forest. That is, we 

did not calculate a climate model ensemble, but ran the RF model for each GCM and each RCP separately. 

AEZ 
The agro-ecological-zones (AEZs) dataset is widely used in agronomic, economic and integrated assessment 

models to determine where different crops could be grown. For example, the Global Trade Analysis Project 

(GTAP) model determines for each economic region an endowment of land in each of the 18 AEZ’s. In this 

study, we used AEZs calculated by Harman (in prep.) based on a methodology that reproduces the results of 

Ramankutty and Foley (1999) for the reference period (1969-1999). Their original method divides the total 

global land surface into 18 AEZs in a two-step process.  First is a partitioning into three climate zones, tropical, 

temperate and boreal, based on two climate metrics: the minimum over the year of the daily minimum 

temperature and growing degree days (GDD), a measure of heat accumulation used by agronomist to predict 

plant growth rates and phenological stages.  Second, each climate zone is further sub-divided into 6 land types 

according to the length of the growing period (LGP).  LGP is defined as the period of time in a given year when 

the climate is optimal for plants to grow and complete a phenological cycle. GDD and LGP are well-established 

metrics from agronomy research though it should be recognised that there is an inherent scale issue between the 
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plot-scale research that underpins their definition and their use in global scale climate models and economic 

models.   

Although an AEZ map developed by Ramankutty and Foley (1999), which input data have been reproduced by 

IIASA and FAO and known as GAEZ (v3) (Fischer and Nachtergaele 2008) is already in relatively wide use, 

the GAEZ data set cannot be extrapolated to account for climates different to that of its baseline period, 1969-

1999.  Hence we have used a generic, objective and replicable methodology to reconstruct the AEZs. This 

methodology accommodates changes in the climatic factors that are determinants of the AEZs (Harman in 

prep.). The defining climate metrics and the resultant AEZ distribution for the GAEZ 1969-1999 base period 

have been reconstructed using readily obtainable, curated and assured datasets, but it was necessary to modify 

some aspects of the definitions of GDD and LGP to be numerically more robust. Our baseline AEZs are based 

on the gridded, re-analysed, monthly-averaged, daily minimum and near-surface air temperature from the 

Climate Research Unit CRU-TS3.21 data (Jones and Harris 2008). Differences between GTAP-AEZ and 

Harman’s (in prep) can be seen in around 2.8% of grid cells along the tropical-temperate climate zone boundary 

and 2.7% of grid cells along the temperate-boreal climate zone boundary, where cells are classified into 

different AEZs by the two approaches. These discrepancies are due to the different baselines used in the 

generation of the AEZs. To extend our crop cover model projections to future times with changing climates, 

projected AEZs (PAEZs) were then constructed based on projected climate metrics. These projected metrics 

(daily minimum temperatures, GDD and LGP) were generated using climate data from four Global Climate 

Models (GCMs) sourced from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database as 

described in 2.2.1.   

Biophysical variables 
Terrain elevation and dominant soil maps were used both as direct explanatory variables in the Random Forest 

model and also as inputs to the AEZs and PAEZs.  These variables were assumed to be unchanged between the 

baseline and future periods.   

Socio-economic variables 

GDP 
We use a set of two normalised (ranking from 0 to 1) GDP projections that corresponds to the two RCPs, 4.5 

and 8.5 (Cai et al. 2015). These GDP projections were generated using GTEM-C, the CSIRO variant of the 

Global Trade and Environment model (Cai et al. 2015). In the first scenario, global population was assumed to 

follow the median variant of the United Nations World Population Projections, reaching 10.6 billion people in 

2100 (UN 2012). The supply of fossil fuels was assumed to continue the current trend of growth while 

assumptions about industrial and household energy efficiency improvements were conservative, ranging from 

0.15%  to 0.75% per year Cai et al. (2015). As such, global greenhouse gas (GHG) emissions followed RCP8.5, 

reaching 130 gigatonnes GtCO2 in 2100. Based on the above assumptions, regional total factor productivities 

(TFP) were iteratively derived such that regional Gross Domestic Products (GDP) will continue the momentum 

of growth, with world GDP reaching 450 trillion in constant 2007 US dollars (2007 US$). The second scenario 

adopted the same assumptions about demographic change, energy efficiency improvement and regional TFP, 

but imposed a (uniform) global carbon price, to ensure that global GHG emissions followed RCP4.5. In this 
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scenario, the economy responded by switching away from energy and carbon intensive industrial practice and 

consumption patterns. However, the overall differences in GDP between the two scenarios were minor. This is 

because the economic cost of decarbonisation was contained by the uptake of renewable energy generation and 

carbon sequestration technologies in the short term and offset by the avoidance of climate damages in the long 

term. As a result, the ranking of GDP by region did not change (Fig. A2 in Supplementary information file), 

although there were differences in the actual monetary values (for further details, see Cai et al. 2015). 

Technology 
Nitrogen and phosphorus Fertiliser Application data were sourced from the Global Fertilizer and Manure dataset 

v1 for the period 1994-1999 obtained from the Socioeconomic Data and Applications Center (SEDAC). Units: 

Kg/Ha (Potter and Ramankutty, 2010). 

See Partial Dependence Plot foo all variables (Figure S7). 

 

 

Fig S1. Maps of covariates used in Random Forest. A full description, references and the units for each 

covariate can be found in Table 1.  
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Table S1. Regional aggregation in GTEM-C model 

Code Name Regions 

USA USA United States of America 

EUR Europe Albania, Austria, Belarus, Belgium, Bulgaria, Canada, Croatia, Cyprus, Czech Republic, 
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, 
Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Rest of EFTA, 
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom 

CHN China China, Hong Kong 

JPN Japan Japan 

IND India India 

BRZ Brazil Brazil 

CAN Canada Canada 

AUS Australia Australia 

NZL New Zealand New Zealand 

IDN Indonesia Indonesia 

MEX Mexico Mexico and Rest of North America 

RLA Rest of Latin America Argentina, Bolivia, Caribbean, Chile, Colombia, Costa Rica, Ecuador, El Salvador, 
Georgia, Guatemala, Honduras, Nicaragua, Panama, Paraguay, Peru, Uruguay, Venezuela, 
Rest of Central America, Rest of South America 

RSA Rest of South Asia Bangladesh, Pakistan, Sri Lanka, Rest of South Asia 

RNEA Rest of Northeast Asia Korea, Lao People’s Democratic Republic, Malaysia, Mongolia, Nepal, Philippines, 
Singapore, Taiwan, Thailand, Viet Nam, Rest of ASEAN, Rest of East Asia, Rest of 
Oceania 

FSU Former Soviet Union Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Russian Federation, Ukraine, Rest 
of Europe 

NAF Northern Africa Egypt, Morocco, Tunisia, Rest of North Africa 

SAF Southern Africa Botswana, Cameroon, Cote d’Ivoire, Ethiopia, Ghana, Kenya, Madagascar, Malawi, 
Mauritius, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, 
Zambia, Zimbabwe, Central Africa, South Central Africa, Rest of Western Africa, Rest of 
Eastern Africa, Rest of South African Customs 

MDE Middle East Bahrain, Islamic Republic of Iran, Israel, Kazakhstan, Kuwait, Oman, Qatar, Saudi Arabia, 
Turkey, United Arab Emirates, Rest of West Asia 
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Figure S2. GDP estimates for the baseline periods and projections to 2080 based on the RCPs 4.5 and 8.5. 

Source: projections obtained from the GTEM-C model (Cai et al., 2015). 
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Figure S3. Zero crop cover in the baseline and projected in the future predictions. Each map shows any pixel 

that was zero in the baseline period and its crop cover was projected to have very small value, e.g. smaller than 

0.05%. 
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Figure S4. Ensemble mean of projected novel agricultural systems. The maps show areas that present zero crop 

cover in the baseline period increase to greater than 10% cover in the projections by the 2070-2100 period. Each 

pixel shows the average value for the 4 GCM, the two maps show ensembles of projected agricultural systems 

for the 2 RCPs. 



9 
 

 

Figure S5. Magnitude of change in the projected crop cover using information from the 4GCMs under the 

RCP4.5 scenario. 
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Figure S6. Magnitude of change in the projected crop cover using information from the 4GCMs under the 

RCP8.5 scenario. 
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Figure S7. Partial plots for the trained Random Forest model. 

  



12 
 

 

 

 

References 
Cai, Y., D. Newth, J. Finnigan, and D. Gunasekera. 2015. A hybrid energy-economy model for global integrated 

assessment of climate change, carbon mitigation and energy transformation. Applied Energy 148: 381–

395. doi:10.1016/j.apenergy.2015.03.106. 

Dix, M., P. Vohralik, and D. Bi. 2013. The ACCESS Coupled Model: Documentation of core CMIP5 

simulations and initial results. Australian Meteorological and Oceanographic Journal 63: 83–99. 

Fischer, G., and F. Nachtergaele. 2008. Global agro-ecological zones assessment for agriculture (GAEZ 2008). 

IIASA, Laxenburg, Austria. 

Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka. 2013. Evaluating adjusted 

forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. 

Journal of Geophysical Research: Atmospheres 118: 1139–1150. doi:10.1002/jgrd.50174. 

Jones, P., and I. Harris. 2008. CRU Time Series (TS) high resolution gridded datasets. University of East Anglia 

Climatic Research Unit (CRU) …. 

Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R news. 

Potter, P., and N. Ramankutty. 2010. Characterizing the spatial patterns of global fertilizer application and 

manure production. Earth Interactions 14: 1–22. 

Ramankutty, N., and J. A. Foley. 1999. Estimating historical changes in global land cover: Croplands from 1700 

to 1992. Global Biogeochemical Cycles 13: 997–1027. 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. An Overview of CMIP5 and the Experiment Design. 

Bulletin of the American Meteorological Society 93: 485–498. 

UN. 2012. Probabilistic Population Projections - based on the 2012 Revision of the World Population 

Prospects. 

Vuuren, D. Van, J. Edmonds, and M. Kainuma. 2011. The representative concentration pathways: an overview. 

Climatic Change. 

 


