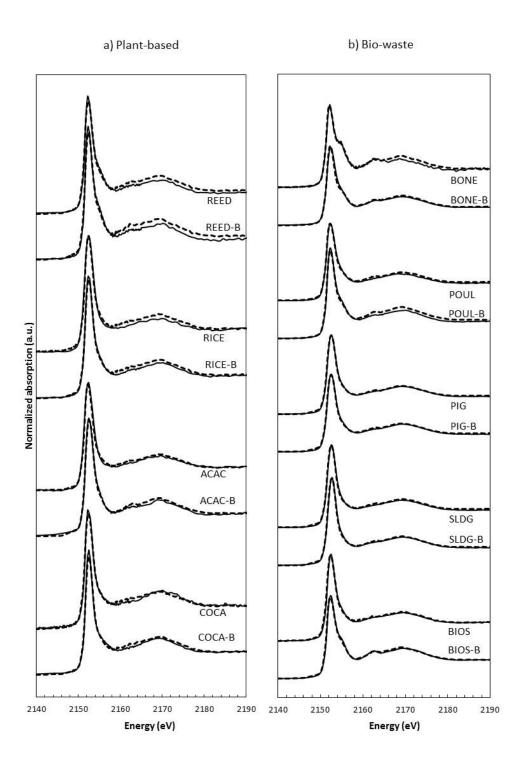
Ambio

Electronic Supplementary Material

Title: Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis

Authors: James Stephen Robinson, Karen Baumann, Yongfeng Hu, Philipp Hagemann, Lutz Kebelmann, Peter Leinweber **Appendix S1.** Reference standards selected for the P *K-edge* XANES spectroscopy. Chemicals were purchased from Sigma-Aldrich Laborchemikalien GmbH, D-30926 Seelze, Germany.


Dicalcium phosphate: CaHPO₄, CAS 7757-93-9 Brushite: CaHPO₄.2H₂O, CAS 7789-77-7 Calcium dihydrogen phosphate: Ca(H₂PO₄)₂.2H₂O; CAS 7757-93-9 Hydroxyapatite: Ca₅H(PO₄)₃.2.5H₂O; CAS 1306-06-5 Magnesium phosphate: MgHPO₄.3H₂O, CAS 7782-75-4 Tri-magnesium phosphate: Mg₃(PO₄)₂.8H₂O, CAS 13446-23-6 Magnesium pyrophosphate: Mg₂O₇P₂, CAS 13446-24-7 Aluminium phosphate: AlPO₄.xH₂O, CAS 66905-65-5 Aluminium metaphosphate: Al(PO₃)₃, CAS 13776-88-0 Iron (III) phosphate tetrahydrate: FePO₄.4H₂O, CAS 31096-47-6 Sodium dihydrogen phosphate: NaH₂PO₄, CAS 7558-80-7 Disodium phosphate: Na₂HPO₄.2H₂O, CAS 10028-24-7 Potassium dihydrogen phosphate: KH₂PO₄, CAS 7778-77-0 Dipotassium phosphate: K₂HPO₄.3H₂O, CAS 16788-57-1 Tripotassium phosphate: K₃PO₄, CAS 7778-53-2 Potassium pyrophosphate: K₄P₂O₇, CAS 7320-34-5 Ammonium dihydrogen phosphate: NH₄H₂PO₄, CAS 7783-28-0 Di-ammonium phosphate (NH₄)₂HPO₄, CAS 7722-76-1 P sorbed to Fe oxides: Goethite (A16267, purchased from Alfa Aesar, Thermo Fisher, Kandel GmbH, D 76057, Karlsruhe/Germany), and 2-line-ferrihydrite

(prepared according to the method of Schwertmann and Cornell, 2008) were equilibrated with KH₂PO₄ do achieve a desired P-concentration of 2000 μmol l⁻¹ KH₂PO₄ with 0.01 M CaCl₂-background electrolyte solution and initial pH of 6. The remaining solid matter was dried for 24 h at 40°C and stored in a desiccator. P sorbed to Al oxides: A synthetic and commercially available gibbsite (analytical grade, Merck Millipore, D 64293 Darmstadt/Germany) was loaded with P as described for the Fe-oxides. Phosphorylethanolamine: CAS 39382-08-6 Asolectin: MFCD00146015

Adenosine 5'-monophosphate disodium salt: CAS 4578-31-8 Adenosine 5'-diphosphate disodium salt: CAS 16178-48-6 Adenosine 5'-triphosphate disodium salt: CAS 34369-07-8 Phytic acid sodium salt hydrate: CAS 14306-25-3 2-aminoethylphosphonic acid: CAS 2041-14-7 Phenylphosphonic acid: CAS 1571-33-1

References:

Schwertmann U, Cornell RM: Iron Oxides in the Laboratory. Preparation and Characterization, Hoboken: Wiley-VCH, 2008.

Fig. S1 Stacked normalized P *K*-edge XANES spectra of the biomass feedstocks and their derived biochars (-B): a) plant-based and b) bio-waste materials. Spectra derived from the linear combination fitting of standards are presented as broken lines (-----).