
A Online Appendix to the paper “A Comprehensive Model for
Cyber Risk based on Marked Point Processes and its Appli-
cation to Insurance”

A.1 Background on Point Processes

Proposition 4 (Superposition, ([49], p.16)). Let {Ni}i∈N be a countable collection of point processes,
then their superposition

⋃∞
i=1Ni also forms a point process. If N1, N2, . . . are independent Poisson

processes with mean measures Λ1,Λ2, . . ., then their superposition will also be a Poisson process with
mean measure Λ =

∑∞
i=1 Λi.

Proposition 5 (Thinning ([28], p.34)). Let N(·) be a (simple, inhomogeneous) Poisson process with rate
λ(·). Let p(·) be a measurable function on [0,∞) such that 0 ≤ p(x) ≤ 1 holds ∀x ∈ [0,∞). Let a new
process Ñ(·) be formed by independently looking at each point of a realization {ti} of N(·) and retaining
it with probability p(xi) (thus deleting it with probability 1− p(xi)). Then Ñ(·) is a Poisson process with
rate p(x)λ(x).

Definition 1 (Marked Point Process ([28], 6.4.I)). A marked point process (MPP) with locations in
X and marks in K is a point process {xi, ki} on X × K with the additional property that the ground
process Ng(·), meaning the process of locations {xi} is itself a point process, i.e. for bounded A ∈ BX ,
Ng(A) = N(A×K) <∞.

Proposition 6 ([28], Prop. 6.4.IV). Let N be a MPP with independent marks. Then the probability
structure of N is completely defined by the distribution of Ng and the mark kernel {F (k|x) : k ∈ BK, x ∈
X} representing the conditional distribution of the mark, given location x.

Definition 2 (Compound Poisson process). Let N := (N(t))t≥0 be a Poisson process with mean measure
Λ(t) > 0. Let {Zi}i∈N be a sequence of iid. random variables independent of N . Then the process
R := (R(t))t≥0 defined as

R(t) :=

N(t)∑
i=1

Zi, t ≥ 0,

is called a compound Poisson process.

A.2 Characteristics of Compound Poisson Distribution

Theorem 1 (Wald equation ([78])). Let {Xi} be a sequence of real-valued, iid. random variables and
let N(t) ≥ 0 be an integer-valued r.v. independent of the sequence {Xi}. Suppose E[N(·)] < ∞ and
E[Xi] <∞. Then

E
[N(t)∑
i=1

Xi

]
= E[X1]E[N(t)].

Theorem 2 (Law of total variance ([15], p. 401)). Let X and Y be random variables on the same
probability space and assume Var[Y ] <∞. Then

Var[Y ] = E[Var(Y |X)] + Var(E[Y |X]).

The last two results imply that if {Xi} is a sequence of iid. random variables and N(t) ≥ 0 an
integer-valued random variable independent of the sequence {Xi}, then it holds

Var
(N(t)∑

i=1

Xi

)
=: Var(Y (t)) = E[Var(Y (t)|N(t)] + Var(E[Y (t)|N(t)])

= E[N(t)Var(X1)] + Var(N(t)E[X1])

= Var(X1)E[N(t)] + E[X1]2Var(N(t)).

Proposition 7 ([57], Prop.3.3.4). Consider the independent compound Poisson sums

Lj =

Nj∑
i=1

X
(j)
i , textj = 1, . . . ,K,
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where Nj ∼ Poi(λj) for some λj > 0 and, for every fixed j, (X
(j)
i )i=1,2,... is an iid. sequence of claim

sizes. Then the sum
L̃ = L1 + . . .+ LK

is again compound Poisson with representation

L̃
d
=

Nλ∑
i=1

Yi, textNλ ∼ Poi
( K∑
j=1

λj

)
,

and (Yi) is an iid. sequence, independent of Nλ, with mixture distribution given by

FY1
(x) =

K∑
j=1

λj∑
λj
F
X

(j)
1

(x), textx ∈ R.

A.3 Calculations and Proofs from Chapter 4

Proof of Proposition 1. Note that based on (A4) for generating Si and generally mi being distributed
according to cdf. FM , S∗i can be thought of as generated analogously to Si by drawing a realisation of
mi first and then letting

P(Zij = 1 | Gi = 0, mi) =

{
pgen iid. ∀j ∈ {1, . . . ,K} s.t. cj < mi,

0 else

P(Zij = 1 | Gi = 1, Bi = b̂, mi) =

 psec iid. ∀j ∈ {1 +
∑b̂−1
`=1 K`, . . . ,

∑b̂
`=1 K`} s.t. cj < mi,

0 else

i.e. one adds Zij ≡ 0 for all j : cj ≥ mi in each case, by effectively drawing only on the subset

of the portfolio of size K∗ = max
k∈{0,...,K}

c[k] < mi (resp. the subset of one industry sector b̂ of size

K∗
b̂

= max
k∈{0,...,Kb̂}

cb̂[k] < mi).

Conditioning on the realisation of Gi ∈ {0, 1}, Bi ∈ {1, . . . , B}, mi ∈ [0, 1] (in particular, for mi

distinguishing the cases of falling in any of the intervals [c[K∗], c[K∗+1]] resp. [cb̂[k∗
b̂
], c

b̂
[k∗
b̂
+1]]) yields

P(
∣∣S∗i ∣∣ = k) = P(

∣∣S∗i ∣∣ = k | Gi = 0) P(Gi = 0) +

B∑
b̂=1

P(
∣∣S∗i ∣∣ = k | Gi = 1, Bi = b̂) P(Bi = b̂ | Gi = 1) P(Gi = 1)

= (1− pG)

∫ 1

0

P(
∣∣S∗i ∣∣ = k | Gi = 0,mi = m)dFM (m)︸ ︷︷ ︸

(I)

+ pG

B∑
b̂=1

pb̂

∫ 1

0

P(
∣∣S∗i ∣∣ = k | Gi = 1, Bi = b̂,mi = m)dFM (m)

︸ ︷︷ ︸
(II)

,

where

(I) = (1− pG)

∫ 1

0

(
K∗

k

)
pkgen(1− pgen)K

∗−kdFM (m)

= (1− pG)

K∑
K∗=0

∫ 1

0

1[c[K∗],c[K∗+1]]
(m)

(
K∗

k

)
pkgen(1− pgen)K

∗−kdFM (m)

= (1− pG)

K∑
K∗=0

(
K∗

k

)
pkgen(1− pgen)K

∗−k(FM (c[K∗+1])− FM (c[K∗])
)
,

and

(II) = pG

B∑
b̂=1

pb̂

∫ 1

0

(
K∗
b̂

k

)
pksec(1− psec)

K∗
b̂
−kdFM (m)

= pG

B∑
b̂=1

pb̂

K
b̂∑

K∗
b̂
=0

∫ 1

0

1
[cb̂

[K∗
b̂
]
,cb̂

[K∗
b̂
+1]

]
(m)

(
K∗
b̂

k

)
pksec(1− psec)

K∗
b̂
−kdFM (m)

= pG

B∑
b̂=1

pb̂

K
b̂∑

K∗
b̂
=0

(
K∗
b̂

k

)
pksec(1− psec)

K∗
b̂
−k(FM (cb̂[K∗

b̂
+1])− FM (cb̂[K∗

b̂
])
)
.
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This implies that
∣∣S∗i ∣∣ follows a Binomial mixture distribution, i.e. f|S∗i ||n,p(k) = Binom(n, p, k) with

parameters and weights (2K +B + 1 cases):

(n, p) =

(K∗, pgen) with weight (1− pG)
(
FM (c[K∗+1])− FM (c[K∗])

)
, K∗ ∈ {0, . . . ,K},

(k∗
b̂
, psec) with weight pG pb̂

(
FM (cb̂[k∗

b̂
+1])− FM (cb̂[k∗

b̂
])
)
, k∗

b̂
∈ {0, . . . , kb̂}, b̂ ∈ {1, . . . , B}.

Again, intuitively this means that, depending on Gi, Bi, and mi, one draws from a set of different size
of potentially affected firms to suffer a loss. As on the respective set, the draws are conditionally iid.
Bernoulli draws, the number of “successes” of interest is of course Binomially distributed.
Equation (6) in Proposition 1 follows immediately from above using (A3), i.e. mi ∼ Unif([0, 1]), thus
FM (c) = c, ∀c ∈ [0, 1]. Likewise, Equation (5) follows immediately from (A3) and by considering the

case c[K∗] = cb̂[k∗
b̂
] = 0, ∀K∗ ∈ {1, . . . ,K},∀k∗

b̂
∈ {1, . . . , kb̂}, b̂ ∈ {1, . . . , B}.

Corollary 1 (Moments of number of incidents and losses per event).

E
[
|Si|

]
= (1− pG) K pgen + pG psec

B∑
`=1

p` K`,

E
[
|S1|2

]
= (1− pG)

(
K2p2

gen +K pgen (1− pgen)
)

+ pG

B∑
`=1

p`
(
K2
` p

2
sec +Kl psec (1− psec)

)
,

E
[
|S∗i |

]
= (1− pG) pgen

K∑
k∗=0

k∗ (c[k∗+1] − c[k∗]) + pG psec

B∑
`=1

K∑̀
k∗`=0

p` k
∗
` (c`[k∗`+1] − c

`
[k∗` ]),

E
[
|S∗i |

2 ]
=

K∑
k∗=0

(1− pG) (c[k∗+1] − c[k∗])
(
(k∗)2p2

gen + k∗pgen(1− pgen)
)

+

B∑
`=1

K∑̀
k∗`=0

pG p`
(
c`[k∗`+1] − c

`
[k∗` ])

(
(k∗` )2p2

sec + k∗` psec(1− psec)
)
.

Proof of Corollary 1. By Proposition 1, |Si| and
∣∣S∗i ∣∣ follow a Binomial mixture distribution.

For Xi ∼ Binom(n, p), it holds of course that

E[Xi] = n p,

E[X2
i ] = n p (1− p) + n2p2,

Var[Xi] = n p (1− p).

For a general mixture X of r.v. {Xi} with weights {wi}, means {µi}, and variances {σ2
i }, it holds that

E[X] =
∑
i

wiµi,

E[X2] =
∑
i

wiE[X2
i ],

Var[X] =
(∑

i

wi(µ
2
i + σ2

i )
)
− µ2.

The claims follow directly.

Lemma 1 (Joint incident and loss probability). The probability for two firms j1, j2 ∈ {1, . . . ,K} (given
their covariates) to register an incident / loss simultaneously from an event is given by
Case 1: bj1 = bj2 (same industry sector)

P(j1, j2 ∈ Si) = p2
sec pbj1 pG + p2

gen (1− pG),

P(j1, j2 ∈ S∗i ) = F̄M
(

max(cj1 , cj2)
) (
p2
sec pbj1 pG + p2

gen (1− pG)
)
.

Case 2: bj1 6= bj2 (different industry sector)

P(j1, j2 ∈ Si) = p2
gen (1− pG),

P(j1, j2 ∈ S∗i ) = F̄M
(

max(cj1 , cj2)
)
p2
gen (1− pG).
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Proof of Lemma 1. The statements follow immediately by conditioning and using conditional indepen-
dence:
Case 1: bj1 = bj2

P(j1, j2 ∈ Si) = P(j1, j2 ∈ Si | Gi = 1, Bi = bj1) P(Bi = bj1 | Gi = 1) P(Gi = 1) + P(j1, j2 ∈ Si | Gi = 0) P(Gi = 0)

= p2sec pbj1 pG + p2gen (1− pG),

P(j1, j2 ∈ S∗i ) = P
(
j1, j2 ∈ S∗i | Gi = 1,mi > max(cj1 , cj2)

)
P
(
Gi = 1 | mi > max(cj1 , cj2)

)
P
(
mi > max(cj1 , cj2)

)
+ P

(
j1, j2 ∈ S∗i | Gi = 0,mi > max(cj1 , cj2)

)
P
(
Gi = 0 | mi > max(cj1 , cj2)

)
P
(
mi > max(cj1 , cj2)

)
= p2sec pbj1 pG F̄M

(
max(cj1 , cj2)

)
+ p2gen (1− pG) F̄M

(
max(cj1 , cj2)

)
= F̄M

(
max(cj1 , cj2)

) (
p2sec pbj1 pG + p2gen (1− pG)

)
.

Case 2: bj1 6= bj2

P(j1, j2 ∈ Si) = P(j1, j2 ∈ Si | Gi = 1) P(Gi = 1) + P(j1, j2 ∈ Si | Gi = 0) P(Gi = 0) = p2gen (1− pG),

P(j1, j2 ∈ S∗i ) = F̄M
(

max(cj1 , cj2)
)
p2gen (1− pG).

Proof of Proposition 2. It follows immediately using Lemma 1

P(j1 ∈ Si | j2 ∈ Si) =
P(j1, j2 ∈ Si)
P(j2 ∈ Si)

=


p2sec pbj2

pG+p2gen (1−pG)

p̃(bj2 ) , bj1 = bj2 ,

p2gen (1−pG)

p̃(bj2 ) , bj1 6= bj2 ,

P(j1 ∈ S∗i | j2 ∈ S∗i ) =
P(j1, j2 ∈ S∗i )

P(j2 ∈ S∗i )
=



p2sec pbj2
pG+p2gen (1−pG)

p̃(bj2 ) bj1 = bj2 , cj1 ≤ cj2 ,

F̄M (cj1 )

F̄M (cj2 )

(
p2sec·pbj2 pG+p2gen (1−pG)

p̃(bj2 )

)
bj1 = bj2 , cj1 > cj2 ,

p2gen (1−pG)

p̃(bj2 ) bj1 6= bj2 , cj1 ≤ cj2 ,
F̄M (cj1 )

F̄M (cj2 )

(
p2gen (1−pG)

p̃(bj2 )

)
bj1 6= bj2 , cj1 > cj2 .

Proof of remark about conditional vs. unconditional probabilities. We have remarked that for firms of the
same industry sector, the knowledge about an incident for a firm in the same sector always has a non-
negative effect on the incident probability, i.e. for j1, j2 ∈ {1, . . . ,K} with bj1 = bj2 =: bj

P(j1 ∈ Si | j2 ∈ Si) ≥ P(j1 ∈ Si | bj1)

Prop.2⇐⇒ p2
sec pbj pG + p2

gen (1− pG) ≥
(
p̃(bj)

)2
⇐⇒ p2

sec pbj pG + p2
gen (1− pG) ≥

(
pG pbj psec + (1− pG) pgen

)2
. (14)

Generally, for any x = (x1, . . . , xn)′,y = (y1, . . . , yn)′ ∈ Rn (n ∈ N), the Cauchy–Schwarz inequality
states that ( n∑

i=1

xi yi

)2

≤
( n∑
i=1

x2
i

)( n∑
i=1

y2
i

)
.

Let a = (a1, . . . , an)′ ∈ (0,∞)n,b = (b1, . . . , bn)′ ∈ Rn (n ∈ N), and assume
∑n
i=1 ai ≤ 1. Substituting

above x =
√

a b,y =
√

a yields( n∑
i=1

ai bi

)2

≤
( n∑
i=1

ai b
2
i

)( n∑
i=1

ai

)
︸ ︷︷ ︸
≤1

≤
n∑
i=1

ai b
2
i .

Substituting for n = 2

a = (a1, a2)′ = (pG pbj , (1− pG))′,

b = (b1, b2)′ = (psec, pgen)′,

yields (14).
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Lemma 2 (Moments of cumulative incident and loss numbers). It holds that

E
[
N̄ ·,syst(T )

]
= Λ·,g(T )

(
(1− pG) K pgen + pG psec

B∑
`=1

p` K`

)
,

Var
[
N̄ ·,syst(T )

]
= Λ·,g(T )

(
(1− pG)

(
K2p2gen + K pgen (1− pgen)

)
+ pG

B∑
`=1

p`
(
K2
` p2sec + K` psec (1− psec)

))
,

E
[
N ·,syst(T )

]
= Λ·,g(T )

(
(1− pG) pgen

K∑
k∗=0

k∗ (c[k∗+1] − c[k∗]) + pG psec

B∑
`=1

K∑̀
k∗`=0

p` k
∗
` (c`[k∗`+1] − c`[k∗` ])

)
,

Var
[
N ·,syst(T )

]
= Λ·,g(T )

( K∑
k∗=0

(1− pG) (c[k∗+1] − c[k∗]) ((k∗)2p2gen + k∗pgen(1− pgen))

+

B∑
`=1

K∑̀
k∗`=0

pG p` (c`[k∗`+1] − c`[k∗` ]) ((k∗)2p2sec + k∗psec(1− psec))
)
.

Proof of Lemma 2. For the number of arrivals of the ground process on any interval [0, T ], it holds that

E
[
N ·,g(T )

]
= Var

[
N ·,g(T )

]
= Λ·,g(T ) =

∫ T

0

λ·,g(t)dt.

By Wald’s equation and the law of total variance (see Appendix A.2), it follows from Corollary 1

E
[
N̄ ·,syst(T )

]
= E

[
N ·,g(T )

]
E
[
|Si|

]
= Λ·,g(T )

(
(1− pG) K pgen + pG psec

B∑
`=1

p` K`

)
,

Var
[
N̄ ·,syst(T )

]
= E

[
N ·,g(T )

]
Var

[
|Si|

]
+ E

[
|Si|

]2 Var[N ·,g(T )] = E
[
N ·,g(T )

]
E
[
|Si|2

]
= Λ·,g(T )

(
(1− pG)

(
K2p2

gen +K pgen (1− pgen)
)

+ pG

B∑
`=1

p`
(
K2
` p

2
sec +K` psec (1− psec)

))
.

Likewise,

E
[
N ·,syst(T )

]
= E

[
N ·,g(T )

]
E
[
|S∗i |

]
= Λ·,g(T )

(
(1− pG) pgen

K∑
k∗=0

k∗ (c[k∗+1] − c[k∗]) + pG psec

B∑
`=1

K∑̀
k∗`=0

p` k
∗
` (c`[k∗`+1] − c

`
[k∗` ])

)
,

Var
[
N ·,syst(T )

]
= E

[
N ·,g(T )

]
E
[
|S∗1 |

2 ]
= Λ·,g(T )

( K∑
k∗=0

(1− pG) (c[k∗+1] − c[k∗]) ((k∗)2p2
gen + k∗pgen(1− pgen))

+

B∑
`=1

K∑̀
k∗`=0

pG p` (c`[k∗`+1] − c
`
[k∗` ]) ((k∗)2p2

sec + k∗psec(1− psec))
)
.

Proof of Proposition 3. It follows immediately from Lemma 2 that

DI
(
N̄ ·,syst(T )

)
=

Var
[
N̄ ·,syst(T )

]
E
[
N̄ ·,syst(T )

] =
E
[
|Si|2

]
E
[
|Si|

]
=

(1− pG)
(
K2p2gen +K pgen (1− pgen)

)
+ pG

∑B
`=1 p` (K2

` p
2
sec +K` psec (1− psec))

(1− pG) K pgen + pG psec
∑B
`=1 p` K`

= 1 +
(1− pG) p2gen (K2 −K) + pG p2sec

∑B
`=1 p`(K

2
` −K`)

(1− pG) K pgen + pG psec
∑B
`=1 p` K`

> 1,

v



and likewise

DI
(
N ·,syst(T )

)
=

Var
[
N ·,syst(T )

]
E
[
N ·,syst(T )

] =
E
[∣∣S∗i ∣∣2 ]
E
[∣∣S∗i ∣∣ ]

=

∑K
k∗=0(1− pG) (c[k∗+1] − c[k∗]) ((k∗)2p2gen + k∗pgen(1− pgen))

(1− pG) pgen
∑K
k∗=0 k

∗ (c[k∗+1] − c[k∗]) + pG psec
∑B
`=1

∑K`
k∗`=0 p` k

∗
` (c`

[k∗`+1]
− c`

[k∗` ]
)

+

∑B
`=1

∑K`
k∗`=0 pG p` (c`[k∗`+1] − c

`
[k∗` ]

) ((k∗` )2p2sec + k∗` psec(1− psec))

(1− pG) pgen
∑K
k∗=0 k

∗ (c[k∗+1] − c[k∗]) + pG psec
∑B
`=1

∑K`
k∗`=0 p` k

∗
` (c`

[k∗`+1]
− c`

[k∗` ]
)

= 1 +
(1− pG)

∑K
k∗=0 p

2
gen((k∗)2 − k∗)(c[k∗+1] − c[k∗]) + pG

∑B
`=1

∑K`
k∗`=0 p

2
secp`((k

∗
` )2 − k∗` )(c`[k∗`+1] − c

`
[k∗` ]

)

(1− pG)pgen
∑K
k∗=0 k

∗(c[k∗+1] − c[k∗]) + pGpsec
∑B
`=1

∑K`
k∗`=0 p`k

∗
` (c`

[k∗`+1]
− c`

[k∗` ]
)

> 1.

The fractions in the last lines of both equations are obviously non-negative (positive, under the addi-
tional assumptions in Proposition 3), as they contain only sums and products of non-negative (positive)
quantities.

A.4 Alternative Severity Distributions

DB: Use link between number of records and cost

While it is difficult to find reliable empirical data about the cost of a data breach, some data about the
number of breached / stolen records is available. Thus, several authors have tried to find a link between
the number of records and the cost of a data breach. The often cited Jacob’s formula ([47]) suggests to
link the log-transformed cost L of a data breach to the number of compromised records D according to

log(L) = 7.68 + 0.7584 log(D). (15)

An amendment to this formula was proposed in [41], who argue that [47] did not yet take into account
the cost of mega data breaches observed in future years and thus alternatively propose

log(L) = −1.998 + 7.503 log
(

log(D)
)
. (16)

Therefore, an alternative to modelling the cost of a data breach directly using a combination of log-normal
and GPD would be to first model the number of breached records using a log-normal (as suggested by
the results in [32]) and then convert the number of records into monetary losses using (15) or (16).

In the context of this work, let Dij be the number of lost / stolen records in a DB incident at time
ti affecting firm j (where {ti}i∈N only counts the event times at firm j). Then assume

Dij ∼ LN
(
µDBj (ti), σ

DB
j (ti)

)
, (17)

µDBj (ti) = αµ,DB + fµ,DB,3(xj3) + fµ,DB,4(xj4) + gµ,DB(ti),

σDBj (ti) ≡ σDB ,

where the functions fµ,DB,· and gµ,DB are as usual. By (15), the number of records Dij is converted
into the cost of the breach Lij according to

log(Lij) = 7.68 + 0.7584 log(Dij),

which is equivalent to directly assuming that

Lij ∼ LN(µ̂DBj (ti), σ̂
DB),

µ̂DBj (ti) = αµ̂,DB + fµ̂,DB,3(xj3) + fµ̂,DB,4(xj4) + gµ̂,DB(ti),

σ̂DBj (ti) ≡ σ̂DB

Likewise, using (16) to convert the number of records into the cost of the breach, i.e. assume Dij to be
distributed according to (17) and the breach cost Lij then to be given by

log(Lij) = −1.998 + 7.503 log
(

log(Dij)
)
.
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BI: Replace log-normal by PERT

Regarding the economic impact of BI incidents, some sources from the non-cyber domain are available
([21, 30, 44, 48, 85]). The only sources including indications of which distributions are useful to model
economic loss from BI are [85], who finds the size of yearly BI insurance claims to follow a Pareto distri-
bution with an extremely heavy tail and infinite expected claim size, and [44], who suggests modelling BI
loss by a PERT distribution, a special case of the beta distribution with the three parameters minimum
xmin, mode xmode, and maximum xmax with density

fPERT (x) =
(x− xmin)v−1(xmax − x)w−1

Beta(v, w)(xmax − xmin)v+w−1
1[xmin,xmax],

v = 1 + γP

(xmode − xmin
xmax − xmin

)
,

w = 1 + γP

(xmax − xmode
xmax − xmin

)
,

where Beta(·) is the Beta function and for the standard PERT γP = 4.
Thus, for BI incidents, one could suggest replacing the log-normal distribution for the body by a PERT
distribution, i.e. assume for a BI loss Lij at time ti affecting firm j it holds

(Lij | Lij ≤ uBIij ) ∼ PERT (xmin
ij , xmodeij , xmax

ij , 4),

xmin
ij = 0,

xmax
ij = uBIij ,

xmode
ij = exp

(
µBIj (ti)− σBIj (ti)

2
)
,

where PERT (xmin, xmode, xmax, 4) denotes the PERT distribution with minimum, mode, and maximum
values xmin, xmode, xmax respectively and standard shape parameter γp = 4. The mode and threshold
(maximum) are chosen such that they coincide with the ones from the underlying log-normal used to
find the threshold between body and tail of the loss distribution.

A.5 Comparison of all Premium Calculation Results

Below, we compare the premiums (for three individual firms and all sub-portfolios) obtained from the
simulation with dependent losses, with independent losses, with cover limit, and with the premiums
obtained from calculating the (discretized) loss distribution pdf. using Panjer recursion. We observe
that they are very similar in all cases; as for the latter two cases (simulation with cover limit and Panjer
recursion) loss severities are truncated from above, the application of premium principles that depend on
more than just the first moment are feasible and the results for the expected value principle are slightly
lower.
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Premium Principle
Expected Value (ρ = 0.2) Exponential (γ = 10−3) Standard Deviation (ρ = 0.2)

Premium based on dependent simulated losses (incidents)
Firm 1 2.0814 (2.2338) – –
Firm 2 0.4451 (0.7746) – –
Firm 3 1.1732 (1.5164) – –

Premium based on independent simulated losses (incidents)
Firm 1 2.1213 (2.2514) – –
Firm 2 0.4726 (1.3395) – –
Firm 3 1.2149 (1.5353) – –

Premium based on simulated losses (incidents) with cover limit
Firm 1 2.1592 (2.3051) 1.8993 (2.0258) 4.5101 (4.7022)
Firm 2 0.4385 (0.7783) 0.3717 (0.6608) 1.0745 (1.6300)
Firm 3 1.1620 (1.5115) 0.9960 (1.2956) 2.4413 (2.9404)

Premium based on Panjer recursion
Firm 1 1.7633 (1.8849) 2.1160 (2.2619) 1.8366 (1.9632)
Firm 2 0.3797 (0.662) 0.4557 (0.7944) 0.3861 (0.6731)
Firm 3 0.9605 (1.2643) 1.1526 (1.5171) 0.9874 (1.2997)

Table 10: Comparison of one-year cyber insurance premiums for three selected firms, based
on 50.000 simulation runs (upper panels) and Panjer recursion for the given assumptions and
parameter values (lower panel). Numbers in brackets indicate what the premium would have
been if all incoming incidents had been counted.
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(a) Results from simulation (dependent).
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(b) Results from simulation (independent).
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(c) Results from simulation (with cover limit).
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(d) Results from Panjer recursion.

Figure 8: We compare the premium that would be assigned to firms if they were grouped
according to their IT security level, based on the three simulation studies and the implemented
Panjer recursion scheme. Note that the results in Figure 8d are for firms with the given security
level and otherwise baseline covariate levels, so should be expected slightly below results from
simulations of the sub-portfolios with mixed covariate levels.
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A.6 Risk Measures for Simulation with Cover Limit
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(a) V aR0.99; Cover Limit M̄2.
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(b) AV aR0.99; Cover Limit M̄2.

Figure 9: Comparison of V aR0.99 and AV aR0.99 for all sub-portfolios.
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A.7 Details on Covariate Levels

Number of employees
Revenue small medium large

small 1 1 (2)
medium 1 2 3

large (2) 3 3

Table 11: Factor levels of s by combinations of revenue and number of employees. This is
in line with the classification of SMEs in the European Union. As revenue and number of
employees are highly correlated, only very few companies should fall into the classifications in
the upper right or lower left cell.

Number of stored records
Sensitive Data ≤ threshold > threshold

No 1 2
Yes 2 3

Table 12: Factor levels of d, given the number of stored records and sensitivity of data.
Sensitive data includes, e.g. Personally Identifiable Information (PII), Protected Health In-
formation (PHI), or classified government data. Despite the labels, this is not a numerical
attribute and it is not clear whether the two cases labeled 2 (medium risk) are comparable,
or, if considered not comparable, how they should be ordered.

Number of employees e
Sector b small medium large

HC, EDU, GOV 1 1 2
FI, BR, MAN 1 2 3

Table 13: Factor levels of nsup by combinations of sector and number of employees. The
classification relies on expert judgment and is not founded by empirical evidence. An insurance
company might simply obtain this information from its customers.
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