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Abstract

This supplement contains more details on the neural net-
work model and its estimation (Appendix A), on the general
ECME-algorithm (Appendix B) and its adaptations for fitting
Erlang mixtures (Appendix C), and on the model specifica-
tions used in the simulation study (Appendix D). Throughout,
arabic section numbers always refer to the main paper.

Appendix A Details on the neural network
architecture

In this section we provide a detailed description of the neural network
architecture used for modelling the reporting delay distribution in Section 2.3.

Basics on neural networks can be found in [1]. Each function g ∈ G shall be a
composition of different layer functions, each with their own set of independent
parameters. For a general overview of the structure of g, we refer to Figure A1.
It aids understanding to give an informal summary of the structure of G before
diving into the formal definition:

• The head of the network consists of embedding layers for categorical
features and scaling transformations for continuous features, which serves
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Figure A1: Schematic flow of input features to output for a neural network
architecture with three hidden layers. The network will be trained with (9) as
its loss.

to create a uniform-scale, continuous representation of all input features.
The uniformity of scale is particularly important to conserve numer-
ical stability in the presence of random initialization, see Section 3.3 for
details.

• The body of the network aims at transforming the preprocessed features
into an internal representation of the available information, based on one
or more densely connected layers. This ‘narrow’ encoding of the data
serves to extract the most important features with respect to the output
variable (reporting delay in our case).

• The tail of the network aims at transforming the rich internal represent-
ation into concrete distributional parameters θ ∈ Θ. Intuitively, the tail
doesn’t need more complexity because all relevant structure is captured
already in the internal representation.

We start by describing the input layer, which does not contain any free
model parameters. Given an input (x, t, y) ∈ X × R ×Y, we first reorder the
features, putting Nd discrete features to the front and Nc continuous features
(e.g. t) to the back of a new intermediate vector. Furthermore, we shall code
the ith discrete feature as an integer in {1, . . . , ci} where ci ∈ N is the number
of different values that feature i can attain. Overall, we obtain the input layer
function

gin : X× R×Y→
Nd∏
i=1

{1, . . . , ci} × RNc

Next, for each of the discrete features, a so-called embedding layer is needed
to transform the feature into a continuous variable for further use. For the
ith discrete feature, the embedding function gembed,i : {1, . . . , ci} → Rdi has a
fixed hyperparameter di, the embedding dimension, and di · ci free parameters,
denoted by α1, . . . , αci with αj ∈ Rdi , and is defined as

gembed,i : {1, . . . , ci} → Rdi , v 7→ αv.

gembed,i(v) = αv ∈ Rdi is called the embedding of value v. As illustrated
in [2], continuous features should be brought to a common scale to improve
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the numerical condition of the problem. This is realized with an affine trans-
formation with parameters µ ∈ RNc , σ ∈ RNc

+ , namely gscale := x 7→ x−µ
σ with

component-wise division to center and scale continuous features. When fitting
the neural network (see Section 3.3), we employ empirical means and standard
deviations, respectively. The overall embedding layer of the neural network is
defined as

gembed :

Nd∏
i=1

{1, . . . , ci} × RNc → R
∑Nd

i=1 di+Nc , gembed :=

Nd⊗
i=1

gembed,i ⊗ gscale

which is a function with a total of
∑Nd

i=1 ci · di free parameters. We write

ghead := gembed ◦ gin : X× R×Y→ R
∑Nd

i=1 di+Nc .

After the head function that transforms all inputs into continuous vari-
ables, a series of densely connected layers (dense layers for short) are applied.
The total number Ndense ∈ N of dense layers is to be considered as a hyper-
parameter of the model, and the same holds for the output dimension nj , the

number of nodes, of the jth layer. For brevity, we write n0 := Nc +
∑Nd

i=1 di.
The jth dense layer is then defined as

gdense,j : Rnj−1 → Rnj , v 7→ gdense,j(v) := softplus(Av + b),

where A ∈ Rnj×nj−1 and b ∈ Rnj are the free parameters and where the
nonlinear function softplus : x 7→ log(1+ ex), called the activation function, is
applied coordinate-wise. The composition of the Ndense dense layers defines a
function

gbody := gdense,Ndense
◦ · · · ◦ gdense,1 : R

∑Nd
i=1 di+Nc → RnNdense

with
∑Ndense

j=1 (nj−1 + 1) · nj free parameters. When fitting the model (see Sec-
tion 3.3), we also experimented with gdense,j(v) := ReLU(Av + b) but found
results to be worse than with the smooth softplus activation function.

Composing ghead and gbody gives a function gbody ◦ ghead : X × R × Y →
RnNdense which now needs to be mapped to the parameter set Θ of the chosen
reporting delay distribution family F in order to obtain a usable family G. A
common feature of the families F that we invoke is that the parameter space
Θ factors into (possibly bounded) intervals and probability parameters, that
is parameters p constrained to [0, 1]d with ∥p∥1 = 1 (a method to cope with
integer parameters present in Erlang mixtures and derived distributions is
presented below). We can thus construct a natural adapter family of functions
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gtail : RnNdense → Θ as follows: assume

Θ = RN1 × (0,∞)N2 × (0, 1)N3 ×
NP∏
i=1

[0, 1]pi ∩ S1
pi
,

where S1
n denotes the unit sphere in Rn with respect to the 1-norm. Note that

other interval constraints can be trivially reproduced by adding affine trans-
formations, e.g. if θ1 ∈ (a, b) is a constraint in the original parametrization,
substitute θ̃1 = θ1−a

b−a ∈ (0, 1) as an equivalent parameter. The adaptor func-
tion for the BDEGPfix(n,m, κ, ε, α, ξ) family used in the paper is obtained by
setting N1 = 0, N2 = 2, N3 = 0, NP = 3, p1 = n + 1, p2 = m, p3 = 2 in this
general parametrization and ordering the free parameters (θ, σ, p(δ), p(e), p(b)).

With ntail = nNdense+1 := N1 +N2 +N3 +
∑NP

i=1 pi the dimension of Θ, we
define

sigmoid : R→ (0, 1), x 7→ exp(x)

exp(x) + 1

softmaxRn : Rn → (0, 1)n ∩ S1
n, x 7→

(
exp(xi)/

n∑
j=1

exp(xj)
)n

i=1

fadaptor : Rntail → Θ, fadaptor := IdRN1 ⊗
N2⊗
i=1

softplus⊗
N3⊗
i=1

sigmoid⊗
NP⊗
i=1

softmaxRpi

gtail : RnNdense → Θ, v 7→ fadaptor(Av + b) (S1)

where A ∈ Rntail×nNdense and b ∈ Rntail are free parameters. Finally, G is
defined as the collection of all g = gtail ◦ gbody ◦ ghead. G is a family with

nΨ =

Nd∑
i=1

ci · di +
Ndense∑
j=1

(nj−1 + 1)nj + (ndense + 1)ntail

free real parameters. We denote the natural parametrization of G by Ψ = RnΨ

and identify a network g ∈ G by its nΨ weights ψ ∈ Ψ.
The output layer link function fadaptor has a preimage given by

f−1
adaptor = IdRN1 ⊗

N2⊗
i=1

softplus−1 ⊗
N3⊗
i=1

sigmoid−1 ⊗
NP⊗
i=1

softmax−1
Rpi

with softmax−1
Rpi (p) =

(
log(pj)− log(∥p∥∞)

)pi

j=1
and ∥p∥∞ the maximum norm

of p (note that softplus and sigmoid are invertible). This is useful for choice of

initial values based on a global estimate θ̂ during neural network initialization.
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Algorithm S.1 Network Initialization

1: function InitialiseNNet(G, θ̂)
2: ψ ← ()
3: for i = 1, . . . , Nd do ▷ Initialise embedding layers
4: Draw α ∼ U [−0.05, 0.05]di⊗ci

5: Append α to ψ
6: end for
7: for j = 1, . . . , Ndense do ▷ Initialise dense layers

8: l←
√

6
nj+nj−1

9: Draw A ∼ U [−l, l]nj⊗nj−1 ▷ [3]
10: b← 0⃗ ∈ Rnj

11: Append (A, b) to ψ
12: end for
13: b← f−1

adaptor(θ̂) ▷ Initialize tail

14: A← Diag(b) · U [−0.1, 0.1]ntail⊗nNdense

15: Append (A, b) to ψ
16: Flatten ψ ∈ RnΨ

17: end function

Appendix B Derivation of the ECME
Algorithm

In this section we provide a detailed motivation of Algorithm 1 given
in Section 3.2. We follow the notation of the section in the paper.

First note that the conditional density of truncated observations is again
of mixture type:

fXt|Lt=ℓ,Ut=u(x) =

k∑
j=1

pj
fj;θj (x)

F(p,θ)([ℓ, u])
=

k∑
j=1

p̃j;p,θ(ℓ, u)f̃j;θj (x; ℓ, u), ℓ ≤ x ≤ u,

(S2)
where, using the notation Fj;θj ([ℓ, u]) =

∫
[ℓ,u]

fj;θj (z) dµ(z),

p̃j;p,θ(ℓ, u) = pj ·
Fj;θj ([ℓ, u])

F(p,θ)([ℓ, u])
, f̃j;θj (x; ℓ, u) =

fj;θj (x)

Fj;θj ([ℓ, u])
, ℓ ≤ x ≤ u.

(S3)

The EM-algorithm for calculating a maximizer of ℓ(p, θ|I) is based on
regarding the observations (ℓi, xi, ui) as being incomplete, in view of the
fact we do not know from which conditional truncated component dens-
ity f̃j;θj ( · ; ℓi, ui), see (S3), the observation xi ∼ (Xt | (Lt, U t) = (ℓi, ui))
was simulated. More formally let Z = Z(ℓ, u) = (Z1, . . . , Zk), conditioned
on (Lt, U t) = (ℓ, u), follow a multinomial distribution Z|(Lt = ℓ, U t =
u) ∼ Mult(1, p̃1;p,θ(ℓ, u), . . . , p̃k;p,θ(ℓ, u)), i.e., Pr(Z = z|Lt = ℓ, U t = u) =
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p̃z11;p,θ(ℓ, u) · . . . · p̃
zk
k;p,θ(ℓ, u) for z = (z1, . . . , zk) ∈ {0, 1}k with

∑k
j=1 zj = 1. If,

conditional on (Lt, U t) = (ℓ, u) and Zj = 1, the random variableXt has density

f̃j;θj from (S3), then the conditional distribution of Xt given (Lt, U t) = (ℓ, u)
is precisely given by (S2). In view of this representation, we now regard
each (xi, ℓi, ui) as an incomplete observation of (xi, ℓi, ui; zi,1, . . . , zi,k) where

zi,j = zi,j(ℓi, ui) encodes the truncated component density f̃j;θj from which
xi has been drawn. The respective conditional density of a generic complete
observations of (Xt, Z) given (Lt, U t) = (ℓ, u) becomes

f(Xt,Z)|(Lt=ℓ,Ut=u)(x, z) = fXt|(Z,Lt,Ut)=(z,ℓ,u)(x) · Pr(Z = z | Lt = ℓ, U t = u)

=
( k∏

j=1

f̃j;θj (x; ℓ, u)
zj
)
·
( k∏

j=1

p̃j;p,θ(ℓ, u)
zj
)
.

As a consequence, the complete sample weighted conditional likelihood is given
by

ℓ(p, θ|C)

=

N∑
i=1

k∑
j=1

wizi,j

[
log p̃j;p,θ(ℓi, ui) + log fj,θj (xi)− logFj;θj ([ℓi, ui])

]

=

k∑
j=1

N∑
i=1

wizi,j

[
log pj + log fj;θj (xi)− log

(
pjFj;θj ([ℓi, ui]) +

∑
m ̸=j

pmFm;θm([ℓi, ui])
)]
,

where C = (xi, ℓi, ui, wi; zi,1, . . . , zi,k)
N
i=1.

The E-step of the EM-algorithm now involves calculating the conditional
expectation of the complete sample weighted conditional likelihood given the
incomplete sample I = (xi, ℓi, ui, wi)

N
i=1. For that purpose, note that

Pj(x; p, θ) ≡ Pr(Zj = 1 | Xt = x, Lt = ℓ, U t = u)

=
p̃j;p,θ(ℓ, u) · f̃j;θj (x; ℓ, u)∑k

m=1 p̃m;p;θ(ℓ, u) · f̃m;θm(x; ℓ, u)
=

pj · fj;θj (x)∑k
m=1 pm · fm;θm(x)

(S4)

where the last equation follows from (S3). Next suppose that, at the tth it-
eration of the algorithm, we are given an estimate (p(t), θ(t)). Then, under
the assumption that (p(t), θ(t)) is the true parameter that generated C, the
conditional expectation of ℓ(p, θ|C) given the incomplete sample I = I1 =
(xi, ℓi, ui)

N
i=1 is given by

Q(p(t),θ(t))(p, θ|I) ≡ E(p(t),θ(t))[ℓ(p, θ|C) | I]

=

N∑
i=1

k∑
j=1

wiPj(xi; p
(t), θ(t))

[
log pj + log fj;θj (xi)
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− log
(
pjFj;θj ([ℓi, ui]) +

∑
m ̸=j

pmFm;θm([ℓi, ui])
)]
,

(S5)

where we have used (S4). The M-step of the plain EM-algorithm [4]
would now involve updating the parameter (p(t), θ(t)) by (p(t+1), θ(t+1)) ∈
argmax(p,θ)Q(p(t),θ(t))(p, θ|I) and iterating until convergence. However, the
M-step maximization problem is not feasible (which is essentially due to the
random truncation), whence we propose to instead rely on a version of the
EM-algorithm known as the ECME-algorithm [5]. The latter consists of divid-
ing the M-step maximization problem into a series of k + 1 lower-dimensional
and feasible maximization problems (either ‘ECM’ or ‘CM’ steps), that are es-
sentially based on successively maximizing θj 7→ Q(p(t),θ(t))(p, θ|I) (ECM) and
then p 7→ ℓ(p, θ|I) (CM), holding all other parameters fixed:
Step 1. Maximize Q(p(t),θ(t))(p, θ|I) subject to g1(p, θ) = g1(p

(t), θ(t)) where

g1(p, θ) = (p, (θj)j ̸=1)

with solution (p(t+1/(k+1)), θ(t+1/(k+1))).
Step 2. Maximize Q(p(t),θ(t))(p, θ|I) subject to g2(p, θ) =

g2(p
(t+1/(k+1)), θ(t+1/(k+1))) where

g2(p, θ) = (p, (θj)j ̸=2)

with solution (p(t+2/(k+1)), θ(t+2/(k+1))).
...

Step k. Maximize Q(p(t),θ(t))(p, θ|I) subject to gk(p, θ) =

gk(p
(t+(k−1)/(k+1)), θ(t+(k−1)/(k+1))) where

gk(p, θ) = (p, (θj)j ̸=k)

with solution (p(t+k/(k+1)), θ(t+k/(k+1))).
Step k + 1. Maximize ℓ(p, θ|I) from (12) subject to gk+1(p, θ) =

gk+1(p
(t+k/(k+1)), θ(t+k/(k+1))) where

gk+1(p, θ) = θ

with solution (p(t+1), θ(t+1)).
It can be shown that the space filling condition from Definition 2 in [6]

is met (in that paper’s notation we have J1(p, θ) = Rk × {0} × RdΘ2 · · · ×
RdΘk , . . . , Jk(p, θ) = Rk ×RdΘ1 × · · · ×RdΘk−1 ×{0}, Jk+1(p, θ) = {0}k ×RdΘ ,

whence J(p, θ) =
⋂k+1

j=1 Jj(p, θ) = {0}), and the algorithm is therefore known
to converge to local maxima of ℓ(p, θ|I), given suitable regularity conditions.
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Experimenting with the ECME-algorithm, we did in fact found a slight
variant of the above algorithm that proved to converge more quickly in ex-
tensive computing experiments. The variant is based on modifying the jth
step (j = 1, . . . , k) described above as follows: instead of maximizing (p, θ) 7→
Q(p(t),θ(t))(p, θ|I) subject to the given constraint, maximize

θj 7→ Qj;(p(t),θ(t))(θj) =

N∑
i=1

wiPj(xi; p
(t), θ(t))

[
log fj;θj (xi)− logFj;θj ([ℓi, ui])

]
.

(S6)

Here, the change of the objective function may be motivated by rewriting

Q(p(t),θ(t))(p, θ|I)

=

N∑
i=1

k∑
j=1

wiPj(xi; p
(t), θ(t))

[
log p̃j;p,θ(ℓi, ui) + log fj,θj (xi)− logFj;θj ([ℓi, ui])

]

≈
N∑
i=1

k∑
j=1

wiPj(xi; p
(t), θ(t))

[
log p̃j;p(t),θ(t)(ℓi, ui) + log fj,θj (xi)− logFj;θj ([ℓi, ui])

]
,

and maximizing the latter subject to the given constraints is equivalent to
maximizing (S6). Note that the approximation in the last display is typically
quite accurate for large t, when the algorithm is close to convergence.

Calculating a maximum of the function in (S6) may involve a further al-
gorithm depending on some starting value, say θj,0. Following the notation in
(13) from the main paper, we rewrite any solution of such an algorithm as
CML(Fj ,Ij , θj,0), where Fj = {fj;θj : θj ∈ Θj} denotes the jth (untruncated)

component family, where Ij = I
(t)
j := {(xi, ℓi, ui, wiPj(xi; p

(t), θ(t)))} denotes
re-weighted truncated data, and where θj,0 denotes a starting value. In view
of this notation, the overall algorithm may be summarized as in Algorithm 1
in the paper.

Appendix C Derivation of the Erlang Mixture
adapted ECME Algorithm

In this section we will derive the adaptations for fitting Erlang Mixtures in
the setting of Section 3.2. Recall that Erlang Mixture families are given by
F = {

∑k
i=1 pi ·Γαi,θ : p ∈ (0, 1)k, ∥p∥1 = 1, θ ∈ (0,∞), α ∈ Nk, α1 < . . . < αk}.

We will start by providing details on a suitable version of the ECME when
treating the shape parameters α ∈ Nk as fixed and known. For some given in-
terval truncated sample I = {(xi, ℓi, ui, wi)|ℓi ≤ xi ≤ ui} the goal is to find

(p̂, θ̂) = argmaxp,θ ℓ(p, θ|I, α), where ℓ is the weighted conditional log likeli-

hood function from (12) with f(p,θ) =
∑k

j=1 pjdΓαj ,θ and F(p,θ) the respective
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cdf. For solving the maximization problem, we propose to use an ECME al-
gorithm that involves two maximization steps within each iteration. For that
purpose note that, following the ideas at the beginning of Appendix B, the
adaption from (S6) becomes

Q(p(t),θ(t))(θ) :=

N∑
i=1

k∑
j=1

wi · Pj(xi; p
(t), θ(t))

[
log dΓαj ,θ(xi)− log Γαj ,θ([ℓi, ui])

]
.

Each iteration in the adapted ECME-Algorithm for Erlang Mixtures now
consists of two steps:
Step 1. Maximize Q(p(t),θ(t))(θ) with solution θ(t+1/2).

Step 2. Maximize ℓ(p, θ|I, α) subject to g2(p, θ) = g2(p
(t), θ(t+1/2)) where

g2(p, θ) = θ with solution (p(t+1), θ(t+1)).
Note that the first step was decomposed into k separate steps when treating

general mixtures that do not involve common parameters. The procedure is
summarized in Algorithm S.2.

Algorithm S.2 Erlang Mixture ECME-Algorithm

1: function ErlangECME(F ,I, p0, θ0, α, ε)
2: p← p0
3: θ ← θ0
4: l← −∞
5: repeat
6: l0 ← l
7: θ′ ← argmaxθ′ Q(p,θ)(θ

′) ▷ Erlang ECM-Step
8: θ ← θ′

9: p← argmaxp ℓ(p, θ|I, α) ▷ Erlang CM-Step
10: l← ℓ(p, θ, α|I)
11: until l − l0 < ε ▷ Likelihood converged
12: end function

Algorithm S.2 requires starting values p0 and θ0 and a fixed shape para-
meter α0, for which we found a K-Means approach that is partly similar to [7]
to work well:
1. Run K-Means on the observed data {x : (x, ℓ, u) ∈ I1} – ignoring trun-

cation – with prescribed number of components k. Denote the obtained
cluster centers by c1 < c2 < · · · < ck.

2. Estimate the preliminary scale parameter δ = minj{cj − cj−1} with c0 =
0. This choice ensures that all clusters are separated enough to obtain
pairwise different shape parameters in the next step.

3. Use α0,j = round(ci/δ), j = 1, . . . , k as starting values for the shape
parameters.

4. Setm = max(x,ℓ,u,w)∈I x/α0,k such that (0,mα0,k] covers all observations.
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5. Initialise the mixture weights p0,j = #({(x, ℓ, u) ∈ I1 : α0,j−1m < x ≤
α0,jm})/N (where α0,0 := 0) by tabulating, compare [8, Sec. 3.2].

6. Initialise θ0 via moment matching – ignoring truncation, that is, let

θ0 =
x̄∑k

j=1 p0;jα0,j

,

where x̄ = 1
N

∑
(x,ℓ,u,w)∈I x is the observed mean value.

Finally, optimising the shape parameter essentially requires to solve an
integer optimization problem. We propose to use a local shape search as in [8,
Sec. 3.3]:
1. Compute a fit with starting values α0, p0, θ0 as described above, and set
α = α0, with components (α1, . . . , αk).

2. Try fitting (α1, . . . , αk−1, αk + 1), and keep the new parameters if the
log-likelihood improves, repeating until it no longer increases. Proceed
increasing αk−1, . . . , α1 one by one until no more improvements are found.

3. Try fitting (α1 − 1, α2, . . . , αk) and keep the new parameters if the
log-likelihood improves, repeating until it no longer decreases. Proceed
decreasing α2, . . . , αk one by one until no more improvements are found.

4. Go back to 2. if any improvement was found.
For steps 2. and 3. good starting values for p and θ are those from the currently
selected parameters, since the potential changes in α are small for each step.

Appendix D True relationships in simulation

Throughout this section we provide details on the model specifications used
within the simulation experiment in Section 5.

Baseline.

The following paragraph describes the relationships chosen for the baseline
scenario. Other scenarios inherit their relationships from the baseline, changing
only one relationship at a time.

The conditional claim feature distribution PY (x, t) = PY (x) is defined
in terms of the binary conditional distribution of cc and the conditional
distribution of severity, conditioned on the variables shown:

P (cc = material|ac, power, dens) = logit−1
(
0.5 + 0.05 log(dens)− 0.1 ·min(10, ac)

− 0.05 · power+ 0.01 ·min(10, ac) · power
)
,

=: PBaseline(ac, power, dens)

P (severity ∈ ·|cc, brand, ac, power) = logN (µ, σ),

where

µBaseline := µ = 5 + 0.35 · power+ 0.35 · (2− ac)+ − 0.05 · 1(brand ∈ {B1,B2,B12})
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+ 1.0 · 1(brand ∈ {B10,B11}),
σBaseline := σ = 9− 0.01 · (5− ac)+ + 0.08 · power.

The parametrization for the log-normal distribution is such that X ∼
logN (µ, σ) means logX ∼ N (µ, σ); in particular, E(X) = exp(µ+ σ2/2).

The reporting delay distribution PD(x, t, y) = PD(x, y) is chosen as a
BDEGP(n = 1,m = 3, κ = 3 · 365, ε = 365/2)-distribution with parameters
depending on dens, ac, cc and severity as follows: denoting

• p0, the weight for δ0
• p1, the weight for Γ(1, θ)
• p2, the weight for Γ(3, θ)
• p3, the weight for Γ(6, θ)
• p4, the weight for GPD(κ, σ, ξ)
• θ, the common Erlang scale
• σ, the GPD scale
• ξ, the GPD shape

we set

p0 = (1− p4) logit−1
(
−4− 0.5 · 1(cc = material) + 0.5 · 1(ac ≤ 1 ∧ cc = material)

− 0.25 · severity ·

{
10−3 cc = material

10−4 cc = injury
+ 0.2 ·min(1, |age− 45|/15)2

+ 0.01 · log(dens)
)

=: (1− p4)qBaseline
0

p1 = (1− p4 − p0) · logit−1
(
1− 0.5 · 1(cc = material) + 1(ac ≤ 1 ∧ cc = material)

− 2 · severity ·

{
10−3 cc = material

10−4 cc = injury
+ 0.2 ·min(1, 2− age/25)+

)
=: (1− p4 − p0)qBaseline

1

p2 = (1− p4 − p0 − p1) ·
p1

1− p4 − p0
p3 = 1− p4 − p0 − p1 − p2

p4 =

{
0.0005 cc = material

0.02 cc = injury

θ =

{
30 cc = material

180 cc = injury

σ =

{
180 cc = material

365 cc = injury

ξ = 0.2
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Exposure Scenarios

There is a pool of 500, 000 risks from the original dataset, risk features of
policies created at time t are drawn uniformly from the pool. In the exposure
scenario, this pool for new risks is downsampled for ac ≤ 5 by a factor of
f(t) = 0.1 + 0.9 · (1 − t/3650) (2a) and f(t) = 0.1 + 0.9 · 1(t ≥ 3650/2) (2b).
That means, policies created at time t are drawn uniformly from a modified
pool consisting of all 244, 230 original risks with ac > 5, and f(t)·255, 770 risks
with ac ≤ 5 where the original dataset consists of 255, 770 risks with ac ≤ 5.

Claim Intensity Scenarios

The baseline claim intensity of λ(x, t) = truefreq is reduced by 20% for all
risks:

λ(x, t) = truefreq · (1− 0.2 · t/3650), (3a)

λ(x, t) = truefreq · (1− 0.2 · 1(t ≥ 3650/2)). (3b)

Occurence Process Scenarios

The parameters for the claim feature distributions (cc and severity) are
changed depending on t: writing p = P (cc = material|ac, power, dens, t), we
have

p = logit−1
(
logit(PBaseline(ac, power, dens)) + 0.9t/3650

)
,

µ = µBaseline +

{
1.0 cc = material

−0.5 cc = injury
· t/3650,

σ = σBaseline + 0.5 · 1(cc = injury) · t/3650,

(4a)


p = logit−1

(
logit(PBaseline(ac, power, dens)) + 0.9 · 1(t ≥ 3650/2)

)
,

µ = µBaseline +

{
1.0 cc = material

−0.5 cc = injury
· 1(t ≥ 3650/2),

σ = σBaseline + 0.5 · 1(cc = injury, t ≥ 3650/2).

(4b)

Reporting Process Scenarios

The baseline probabilities p0 and p1 are modified on the logit scale, keeping
all other relationships in tact (i.e. p4 does not change, p2 and p3 are defined
via the modified p0 and p1 in the same way as in the baseline scenario):{

p0 = (1− p4) · logit−1(logit(qBaseline
0 ) + 2t/3650),

p1 = (1− p4 − p0) · logit−1(logit(qBaseline
1 + 2t/3650)),

(5a){
p0 = (1− p4) · logit−1(logit(qBaseline

0 ) + 2 · 1(t ≥ 3650/2)),

p1 = (1− p4 − p0) · logit−1(logit(qBaseline
1 + 2 · 1(t ≥ 3650/2))).

(5b)
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