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medical sensor (dimension: [b/s]), the following condition has
to hold:

rsamp−med ≤
Lpayload

Tslot
.

In other words, the above inequality shows clearly that the
communication/networking technology has an impact on the
features of the (medical) sensors. We remark that a careful
analysis of the transmission probabilities of the (medical) sen-
sors will more likely lead to different values of λ (and q) for
each node, depending on the type of physiological constant
and the congestion at the relays, among others. This analysis
goes beyond the scope of this paper and is the subject of future
research. However, whatever the used sensors, it is possible to
derive the equivalent value of λ and, therefore, rely on the
proposed framework.

At this point, we model data transmission. Under the
considered assumption of slotted ALOHA MAC protocol, a
simplified model for the MAC protocol, a sensor has proba-
bility q of transmitting a packet in a slot. Obviously, this makes
sense only if the node has a packet to transmit. Moreover, for
stability reasons, it has to hold that

λ ≤ q.

In fact, the condition λ > q would be equivalent to assuming
that the sensor generates, per time unit, more packets than
those it can actually transmit. In this case, there would be
an overflow at the sensor and packets would be lost. On
the other hand, assuming λ < q is meaningless as well, as
it is impossible that the tranmission probability of a sensor
node is higher than its generation probability (what would
it transmit?). Therefore, in the considered simplified model
it follows that λ = q, i.e., the generation and transmission
processes coincide. Note also that, according to this model, q
is equal to the per-node load (defined as the average number
of packets generated during an interval equal to the duration
of a packet transmission). Therefore, the network load G
(adimensional) is simply equal to q ·Ntot, where Ntot denotes
the total number of sensor nodes in the body area network.

Let N be the set that consists of N leaf sensor nodes con-
nected to a given relay node (i.e., the set of sensor nodes per
cluster, excluding the relay). In half-duplex communications,
a node transmits if and only if: (i) it has a data to send or (ii)
it has no data to send but acts as a relay for other nodes. We
denote by qleaf the probability that a leaf node has a data to
send. Obviously, qleaf = q, i.e., the probability that a data is
present and ready to send. A relay node will transmit if it gets
a data from a leaf (event denoted as “relay”) or has to send
sensed information (event denoted as “data”), i.e.,

qrelay = P {data ∨ relay}
= P {data}+ P {relay} − P {data}P {relay}(25)

where, in the last passage, we have exploited the fact that
the events “data” and “relay” are independent. By defintion,
P {data} = q. Obviously, the probability of relaying depends
on (i) the probability of having a data present at any node and
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Fig. 10: Terminal probability of transmission of a relay node as a
function of a single terminal probability of transmission and
for N ∈ {2, 4, 8} neighbor nodes and Pleaf→relay = 1.

(ii) its successful reception at the relaying node. Therefore,

P {relay} = P {∃n ∈ N : transmit(n) ∧ successful(n)}
= 1− P {∀n ∈ N ,¬(transmit(n) ∧ succesful(n)}

= 1−
N∏
i=1

(
1− qleafP(i)

leaf→relay

)
. (26)

According to the assumption at the end of Section III, a
transmission is successful if the channel is not in an outage,
i.e., if the (instantaneous) SINR exceeds a certain threshold
θ. Therefore, Pleaf→relay = P {SINR > θ} on the considered
link. Since (i) all links in a cluster are, on average, equal and
(ii) qleaf = q, one has

P {relay} = 1− (1− q Pleaf→relay)
N
.

Finally, since P {data} = q, from (25) one has

qrelay = q + (1− q)
[
1− (1− q Pleaf→relay)

N
]

(27)

where Pleaf→relay can be either (17) or (19), in indoor or
outdoor scenarios, respectively.

In Fig. 10, the probability of transmission of a relay node
is shown as a function of the probability of transmission of
a single node, considering various values for the number N1

of nodes in a first-level cluster (i.e., leaves of the collection
tree). It can be observed that when q ≤ 0.5, the value qrelay
depends on the relaying (i.e., qrelay ≥ q since it accounts for
the traffic of the leaves plus the traffic generated by the relay)
and, when q > 0.5, it is dominated by the relay probability of
sending a data itself (i.e., qrelay ≈ q since the relay transmits
its data and prohibits reception of the ones from the leaves).

Finally, in multiple-tier topologies (more complex than the
3-tier considered in this manuscript), the same approach can
be applied to compute the probability of transmission of any
node acting as a relay at a given hierarchical level of the
network. In the considered 3-tier topologies this approach
can be straightforwardly applied to evaluate qsink, i.e., the
probability of transmission from the sink (e.g., through a 3G
connection).




