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Therefore, the sub-problem Pi is equivalent to

max
ρ0,i,ρ1,i,T

Ui = kiρ0,i + (1− ki)ρ1,i (12)

s.t. kiΦ0(ρ0,i, T ) + (1− ki)Φ1(ρ1,i, T ) ≤ Ci, (13)
ρ0,i, ρ1,i = 0, 1

N , 2
N , · · · , 1 (14)

T = NTs > 0 (15)

where ki = µi,ON
µi,ON+µi,OFF

is the probability of the sensing
result being “OFF”.

This sub-problem is very similar to our previous work [11],
in which ρ0,i and ρ1,i are continuous variables. In [11], we
have proved and obtained the relationship between ρ0,i (ρ1,i)
and T , which can be illustrated in Fig. 3:

1) ρ0,i: When period T is small, ρ0,i = 1, which means SU
can access all of the “OFF slots” and its interference to
PUi will not exceed threshold Ci. When T > T i

c , the
optimal ρ0,i will decrease. It’s easy to understand. When
T is small, during [0, T ], the probability that PU’s state
(“OFF”) changes is very small, thus, SU can utilize all of
the N slots (i.e., during [0, T ]) and will not cause much
interferences; and as T increases, the probability that
PU’s state changes will increase, especially at the end
of duration [0, T ], thus in this case, SU should reduce
its transmission time.

2) ρ1,i: From Fig. 3, we can observe that ρ1,i > 0 if
and only if ρ0,i = 1, which is consistent with lemma
1. Furthermore, when T ∈ (0, T i

c), ρ1,i decreases as
T increases. This is because when T is very small,
transmitting in “OFF slot” will cause only a few in-
terference, then SU can use part of the “ON slot”. And
as T increases, the interference caused by transmitting
in “OFF slot” will increase, thus, the transmission time
in “ON slot” should be reduced.

3) Ui: SU’s channel utilization Ui, which is the weighted
average of ρ0,i and ρ1,i, decreases as T increases. And
the maximal Ui is obtained when T approaches to zero
under the assumption that sensing time can be ignored.

When ρ0,i and ρ1,i are continuous variables, the maximal
Ui is obtained when T approaches to zero. However, generally
it is not suitable for discrete cases. Generally, PU’s interfer-
ence tolerance Ci is very small, especially far less than the
probability of PU being “ON” (i.e., 1 − ki). For example,
assume Ci = 1% and 1 − ki = 0.5, thus, the maximal
ρ1,i < Ci

1−ki
= 1

50 . That is to say SU cannot access any
“ON slot” unless there are more than 50 available channels.
Generally, that is not realistic. Therefore in this case, SU can’t
access any “ON slot” at all and the maximal channel utilization
Ui = ki. On the other hand, even though SU could access part
of “ON slots”, the increment of channel utilization caused by
transmitting in “ON slot” is very small (namely, C = 1%) and
meanwhile the sensing period should be very small.

Based on the above discussion, we learn that (i) when T ≤
T i

c , all of the “OFF slots” can be utilized; (ii) generally, SU
can only access none or only a few of the “ON slots”; and
(iii) transmitting in “ON slots” has only a little contribution
to the channel utilization and meanwhile the sensing period
must be very small, which means SU has to take more time
and energy to sensing the channels.
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Fig. 3. Illustration of the relationship between ρ0,i (ρ1,i) and T .

Thus, if we give up the opportunity of transmitting in “ON
slots” and select appropriate sensing period (i.e., Ts ≤ T i

c
N ),

then SU could make full use of the “OFF slots” and the
channel utilization will have no or only a little degradation.
Based on this idea, we propose the following selective access
strategy, which can be regarded as greedy access.

Theorem 2: With periodic sensing strategy, if the sensing
period Ts ≤ T i

c
N , SU can greedily access channel i:

1) If sensing result is “OFF”, SU can access all subsequent
slots before channel i being sensed next time;

2) If sensing result is “ON”, SU should stand by (i.e.,
doesn’t access) until channel i being sensed next time.

In [11], we have obtained that

T i
c =

1
µi,OFF + µi,ON

(
W

(
1

mi
e

1
mi

)
− 1

mi

)
(16)

where mi = Ci

ki(1−ki)
− 1 (when Ci < ki(1 − ki)) and

W (x) denotes the Lambert’s W function [22], which solves
the equation w exp(w) = x for w as a function of x. When
x is real and satisfies x ∈

(
−1

e , 0
)
, there are two possible

real values of W (x). The branch satisfying W (x) ≥ −1 is
called the principle branch, while the other branch satisfying
W (x) < −1 is called the negative branch. Since 0 < Ci <

ki(1−ki), we have 1
mi

e
1

mi ∈
(
−1

e , 0
)
. Obviously, 1

mi
is one of

the solutions, which located on the negative branch. However,
it will result in T i

c = 0. Thus, we are only interested in the
value obtained from the principle branch, which will result in
T i

c > 0.
According to (16), if µi,OFF and µi,ON are big (i.e.,

channel’s state changes fast) or Ci is small (i.e., interference
constraint is strict), then T i

c is small. It is in accord with
intuition.

If Ts ≤ min
1≤i≤N

{
T i
c

N

}
, then the greedy access strategy can

be adopted for all channels. Therefore, we obtain the periodic
sensing and selective access (PS-SA) strategy, as shown in
Algorithm 1.

According to Algorithm 1, for any channel i, since all of the
“OFF slots” have been access and none of the “ON slots” can
be utilized by SU, we have that ρ0,i = 1 and ρ1,i = 0. Thus,
SU’s temporal channel utilization on channel i is ki, which
equals to channel i’s idle probability. That means SU can
“almost” utilize all of the spectrum holes under the proposed


