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Fig. 3. Time and frequency data arrangement.

assume that the maximum time delay of the channel is less
than the GI length.

At the receiver, Nc-point FFT is applied over entire
OFDM/TDM frame [17] to decompose the received signal
into Nc frequency components represented by {R(n); n =
0 ∼Nc−1}. One-tap MMSE-FDE [4] is applied to R(n) as

R̂(n) = R(n)w(n), (4)

where w(n) is the equalization weight given by [17]

w(n) =
H∗(n)

|H(n)|2 +
(

Es

N0

)−1 , (5)

where H(n) and N0 denote the Fourier transform of the
channel impulse response and the single-sided additive white
Gaussian noise (AWGN) power spectrum density, respectively.

The time-domain OFDM/TDM signal is recovered by ap-
plying Nc-point IFFT to {R̂(n); n= 0 ∼Nc−1} and then,
the OFDM demodulation is carried out using Nm-point FFT
to obtain decision variables {d̂k(i); i = 0 ∼ Nm−1} [17].
For channel decoding, the log-likelihood ratios (LLRs) are
computed before decoding [20].

We note here that OFDM/TDM using MMSE-FDE for K=
1 (i.e., Nm=Nc) reduces to the conventional OFDM system
with Nc=256 subcarriers.

III. PERFORMANCE ANALYSIS

We first develop a mathematical model for PAPR dis-
tribution of OFDM/TDM signal and then, we develop the
expression for the capacity of OFDM/TDM using MMSE-
FDE.

A. PAPR of OFDM/TDM

The baseband oversampled OFDM/TDM signal given by
(2) is considered. The PAPR of the observed OFDM/TDM
frame is defined as the ratio of the peak power to the ensemble
average power and can be expressed as

PAPR =
max{|s(t)|2}t=0∼JNc−1

E{|s(t)|2}
. (6)

The expression for PAPR distribution of OFDM/TDM is
derived based on assumption that JNm-point IFFT size is
large enough so that real and imaginary part of the kth time
slot OFDM signal sk(t), for t = 0 ∼ JNm−1, are samples
of zero-mean statistically independent Gaussian process with

unit variance. Hence, the amplitudes {r(t) (= |sk(t)|); t=0∼
JNm−1}, are independent and identically-distributed (i.i.d.)
Rayleigh random variables [1].

Cumulative distribution function (cdf) F (λk) of the PAPR
λk for the kth slot is given by

F (λk) =

[
1− exp

(
− λk

)]JNm

. (7)

We assume that the block data-modulated symbols {dk(i); i=
0∼Nm−1} and k=0∼K−1 are statistically independent so
that the OFDM/TDM signal is generated from K statistically
independent OFDM signals. Hence, the PAPR probability of
OFDM/TDM is given by

FOFDM/TDM (λ) =

{
1−

[
1− exp

(
− λ

)JNm
]}K

. (8)

It can be seen from (8) that the PAPR of OFDM/TDM
decreases as K increases. For K = 1 the above expression
collapses to the PAPR expression for conventional OFDM.
The above PAPR probability expression given by (8) together
with computer simulation results is illustrated in Fig. 6 in the
following section.

B. Channel Capacity of OFDM/TDM Using MMSE-FDE

From here on, we analyze capacity of the OFDM/TDM
using MMSE-FDE based on the assumption that nonlinear
distortion caused by power amplifier is Gaussian. We assume
perfect channel knowledge.

Using the Bussgang theorem [6], [7] the received
OFDM/TDM signal can be expressed as

R(n) = αS(n)H(n) + αI(n) + Sc(n)H(n) +N(n). (9)

where S(n), H(n), I(n), Sc(n) and N(n) denote the Fourier
transform of transmitted OFDM/TDM signal, the channel gain,
the inter-slot interference (ISI), the nonlinear distortion and
zero mean AWGN process having single-sided power spectrum
density N0. α denotes the attenuation constant that can be well
approximated as α = 1− exp(−P 2

s ) +
√
πPs

2 erfc(Ps) [5]-[7],
where Ps is the HPA power saturation level (normalized by the
input average signal power) and erfc[x] = 2√

π

∫∞
x

exp(−t2)dt
is the complementary error function.

After MMSE-FDE the time-domain OFDM/TDM signal is
recovered by applying Nc-point IFFT to {R̂(n);n=0∼Nc−1}
and then, OFDM demodulation is carried out by Nm-point
FFT to obtain decision variables

d̂k(i) =

√
2Es

TcNm
αdk(i)

[
1

Nc

Nc−1∑
n=0

Ĥ(n)

]
+ µk(i) (10)

with Ĥ(n) = H(n)w(n). In the above expression, µk(i)
denotes the kth slot composite noise (i.e., the sum of nonlinear
component, AWGN and residual ISI after FDE). We approxi-
mate µk(i) as a zero-mean complex-valued Gaussian process
and assume that µk(i) is uncorrelated with dk(i). Thus, the


