
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, MAY 2011 9

Algorithm 5 Semi-parallel early-stopping algorithm
1: Initialization: trigger ← 0, succ layer ← 0, layer ← 1.
2: while maximum iterations not reached && trigger = 0 do
3: for i = 1 to zf parallel do
4: check[i]← (success of the i-th row check) ? 0 : 1.
5: end for
6: succ layer ← (

∑
i check[i] == 0) ? succ layer + 1 : 0.

7: if succ layer ≥ ω then
8: trigger ← 1
9: end if

10: layer ← (layer mod M) + 1
11: end while

1 1.2 1.4 1.6 1.8
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
E

R
BER in iteration termination

 

 
ω=2*M
ω=2.5*M
ω=3*M
Ideal Iteration

1 1.2 1.4 1.6 1.8
8

10

12

14

16

18

20

Eb/N0 (dB)

A
ve

ra
ge

 it
er

at
io

ns

Average iterations in termination

 

 
ω=2*M
ω=2.5*M
ω=3*M
Ideal Iteration

Fig. 11. BER/BLER performance and average iterations under different ω.

performance. In this case, if the average iteration times is Iave
(ideal iteration case), the decoding terminates at approximately
Iave + 2 iterations.

F. The Multi-Block Scheme

Suppose the LDPC code with code length N and expansion
factor zf still has serious memory conflicts though being
optimized by our SA and ACO algorithms, which is common
for large zf and relatively small N . To address this problem,
we propose a hardware method called “multi-block” to further
avoid memory conflicts and increase pipeline efficiency. The
“multi-block” scheme is explain as follows.

We construct a new matrix Hv by the parity-check matrix
H with M rows:

Hv =

(
H 0
0 H

)
(16)

Here “virtual matrix” Hv is the combination of two codes H
without “cross constraint” (edge between nodes from different
codes in Tanner Graph) between each other. Suppose v1, v2

are any two legal encoded blocks satisfying that

v1 ·HT = 0 v2 ·HT = 0 (17)

Thus the vector
(
v1 v2

)
is also one legal block for Hv:(

v1 v2

)
·HT

v =
(
v1 v2

)
·
(
HT 0
0 HT

)
= 0 (18)

The key observation is that there are no memory conflicts
between the two codes H due to the diagonal form of Hv . This
enables us to reorder and combine the decoding schedule of

the two codes to reduce memory conflict of each code. We
rewrite H and Hv as follows:

H =

H1

...
HM

 Hvopt =


H

(1)
1 0

0 H
(2)
1

...
...

H
(1)
M 0

0 H
(2)
M

 (19)

where H(j)
i denotes the i-th row of the j-th code. The decoding

schedule is given by above equation, i.e., H
(1)
i comes first,

followed by H
(2)
i , and then H

(1)
i+1, and so on so forth. The

benefit of this “multi-block” scheme is that the insertion of
H

(2)
i provides extra stages for the conflicts between H

(1)
i and

H
(1)
i+1.
To sum up, the “multi-block” scheme changes any gap-l

memory conflict to gap-(2l−1), thus can improve the pipeline
efficiency significantly. Meanwhile, it demands no extra logic
resources (LE) for the design, but may double the memory bits
for buffering two encoded blocks. Since the depth of memory
is not fully used on our FPGA, the proposed method can make
full use of it with no extra resource cost.

VII. NUMERICAL SIMULATION

In this section, we show how our platform produces “good”
LDPC codes with outstanding decoding performance and
hardware efficiency. For comparison, we target on the WiMAX
LDPC code (N = 2304, R = 0.5, zf = 96). We use the
same parameters and degree distributions as WiMAX for our
SA-based constructor. We set “cycle” as performance metric
and memory conflict as efficiency metric. The performance of
one of the candidate codes and the WiMAX code are listed
in Table II. The candidate code has much less length-6/8
cycles and gap-1/2/3 memory conflict. Usually, the candidate
codes can eliminate length-6 cycles and gap-1 conflicts, which
ensures a larger-than-or-equal-to 8 girth and no conflict under
short pipeline (when K ≤ wm).

We simulate the candidate code and WiMAX code through
the GPU platform. The BER/BLER performance is shown in
Fig. 12, while the platform parameters and throughput are
listed in Table III. The water-fall region and the error floor of
our candidate code is almost the same as WiMAX code. For
speed comparison, we also include the fastest result that ever
reported [6]. The “net throughput” is defined by the decoded
“message bits” per second, given by:

net throughput =
P ·Q ·N ·R

t
(20)

where t is the consumed time for running through the GPU
kernel (for us is Algorithm 4). As shown in Table III, our GPU
platform speeds up 490 times against CPU and achieves a net
throughput 24.5 Mbps. Further, our throughput approaches the
fastest one, while providing better precision (floating-point vs.
8 bit fixed-point) for the simulation.

Finally, we optimize the pipeline schedule by ACO-based
scheduler, shown in Table II. The “pipeline occupancy” is
given by running/total clocks required for one iteration. For

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮


