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• Compared to traditional methods (PEG, ACE), the SA-
based constructor takes both decoding performance and
hardware efficiency into consideration during construc-
tion process.

• Compared to existed work [7], the ACO-based scheduler
covers both layer and element permutation, and maps
the problem to a double-layer TSP, which is a complete
solution and can provide better pipelining schedule.

• Compared to existed works, the GPU-based evaluator
first implements the semi-parallel layered architecture
on GPU. The obtained net throughput is similar to the
highest report [6] (about 25 Mbps), while the proposed
scheme has higher precision and better BER performance.
Further, we put the whole coding and decoding system
into GPU rather than a single decoder.

• Compared to existed FPGA or ASIC implementa-
tions [23] [24] [25], the proposed multi-mode high-
throughput decoder not only supports multiple modes
with completely on-the-fly configurations, but also has a
performance loss within 0.2 dB against float precision and
20 iterations, and a stable net-throughput 721.58 Mbps
under code rate 1/2 and 20 iterations. With early-stopping
scheme, a net-throughput 1.2 Gbps is further achieved on
Stratix III FPGA.

The remainder of this paper is organized as follows. Section
II presents the background of our research. Sections III, IV,
V introduce the ACO based pipeline scheduler, the SA based
code constructor and the GPU based performance evaluator,
respectively, followed by hardware implementation schemes
and issues of the multi-mode high-throughput LDPC decoder
discussed in section VI. Simulation results are provided in
section VII and hardware implementation results are given in
section VIII. Finally, section IX concludes this paper.

II. BACKGROUND

A. LDPC Codes and Tanner Graph

An LDPC code is a special linear block code, characterized
by a sparse parity-check matrix H with dimensions M ×N ;
Hj,i = 1 if code bit i is involved in parity-check equation
j, and 0 otherwise. An LDPC code is usually described by
its Tanner Graph, a bipartite graph defined on the code bit
set R and parity-check equation set C, whose elements are
called a “bit node” and a “check node”, respectively. An edge
is assigned between bit node BNi and check node CNj if
Hj,i = 1. A simple 4× 6 LDPC code and the corresponding
Tanner Graph is shown in Fig. 2.

Quasi-cyclic LDPC codes (QC-LDPC) is a popular class of
structured LDPC codes, which is defined by its base matrix
Hb, whose elements satisfying −1 ≤ Hb

j,i < zf . zf is called
the expansion factor. Each element in the base matrix should
be further expanded to a zf × zf matrix to obtain H. The
elements Hb

j,i = −1 are expanded to zero matrices, while
Hb

j,i ≥ 0 are expanded to a cyclic-shift identity matrices with
permutation factors p = Hb

j,i. QC-LDPC is naturally available
for layered algorithms, whose j-th row is exactly layer j. We
call the “1”s of j-th row as the set {Hb

j,i|Hb
j,i ≥ 0}. See Fig. 3

for an example of a 4× 6 base matrix with zf = 4.
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Fig. 2. (a) A simple 4×6 LDPC code. (b) The corresponding Tanner Graph
and a length-6 cycle.
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Fig. 3. (a) A simple 4× 6 base matrix Hb with zf = 4.

B. The BP Algorithm and Effect of Cycle

The BP algorithm is a general soft decoding scheme for
codes described by Tanner Graph. It can be viewed as the
process of iterative message exchange between bit nodes and
check nodes. For each iteration, each bit node or check node
collects the messages passed from its neighborhood, updates
its own message and passes the updated message back to its
neighborhood. BP algorithm has many modified versions, such
as log-domain BP, MSA, and layered BP. All of them originate
from the basic log-domain message passing equations, given
as follows.

L(qij) = L(Qi)− L(rji) (1)

L(rji) =
( ∏

i′∈Rj\i

sgn
(
L(qi′j)

))
Φ
( ∑

i′∈Rj\i

Φ
(
|L(qi′j)|

))
(2)

L(Qi) = L(ci) +
∑
j′∈Ci

L(rj′i) = L(qij) + L(rji) (3)

where L(ci) is the initial channel message, L(qij) is the
message passing from BNi to CNj , L(rji) is the message
of inverse direction, and L(Qi) is the a-posteriori of bit node
BNi. Ci is the neighbor set of BNi, Rj is the neighbor set of
CNj . Φ(x) = log ex+1

ex−1 . These equations can also be applied
in layered BP, the difference is that the L(qij) and L(rji)
should be updated in each layer of the iteration.

The above equations requires the independence of all the
messages L(qi′j), i′ ∈ Rj and L(rj′i), j′ ∈ Ci. However,
the existence of “cycle” in Tanner Graph invalidates this
independence assumption, thus degrades the BER performance
of BP algorithm. A length 6 cycle is shown with bold lines
in Fig. 2. In this case, if BP algorithm proceeds for more
than 3 iterations, the receive messages of the involved bit
nodes v2, v4, v5 will partly contain its own message sent 3
iterations before. For this reason, the minimum cycle length in
the Tanner Graph, called “girth”, has a strong relationship with
its BER performance, and is considered as an important metric
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