
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, MAY 2011 3

in LDPC code construction algorithms (PEG, ACE) [8] [9].

C. Decoder Architecture and Memory Conflict

The semi-parallel structure with layered MMSA core is a
popular decoder architecture due to its good tradeoff among
low complexity, high BER performance and high throughput.
As shown in Fig. 4, the main components in the top-level
architecture include an LLRSUM RAM storing L(Qi), an
LLREX RAM storing L(rji) and a layered MMSA core
pipeline. The two RAMs should be readable and writable.
Old values of L(Qi) and L(rji) are read, and new values are
calculated through the pipeline and written back to RAMs. For
QC-LDPC codes, the values are processed layer by layer, and
the “1”s in each layer is processed one by one.

Decode Pipeline Delay

Stage 1

Stage 2

…
…

1()L Q

1()L Q

3()L Q 6()L Q 2()L Q
5()L Q 6()L Q

3()L Q 6()L Q 2()L Q

LLRSUM RAMLMMSA

core
……

L
L
R
E
X
R
A
M

Conflict Read before Write

……

Time Axis

Stage K

Fig. 4. The layered MMSA decoder architecture and memory conflict.

Memory conflict is a critical problem that constrains the
throughput of the semi-parallel decoder. Essentially, memory
conflict occurs when the RAW (read-after-write) dependency
of L(Qi) is violated. Note that the new value of L(Qi) will
not be written back to RAM until the pipelined calculation
finishes. If L(Qi) is again needed during this calculation
period, the old value will be read, while the new one is still
under processing, see L(Q6) in Fig. 4. This case happens
when the layers j and j + l have “1”s in the same position i
(Hb

j,i ≥ 0,Hb
j+l,i ≥ 0). We call it a gap-l conflict.

Memory conflict slows the decoding convergence and thus
reduces the BER performance. The traditional method of han-
dling memory conflict is to insert idle clocks in the pipeline,
with the cost of throughput reduction. It’s obvious that the
smaller l, the more idle clocks should be inserted, since the
pipeline need to wait at least K stages before writing back
the new values. Usually, the number of gap-1, gap-2, gap-3
conflicts, denote c1, c2 and c3, are considered as the metrics
of measuring memory conflict.

III. THE ACO-BASED PIPELINING SCHEDULER

In this section, we propose the ACO-based pipeline schedul-
ing algorithm to minimize memory conflict. We first formulate
this problem, then map it to the double-layered traveling
salesman problem and finally use ant colony optimization to
solve it.

A. Problem Formulation

Consider a QC LDPC code described by its base matrix H
with dimensions M × N . Thus, there are M layers. Denote
wm, 1 ≤ m ≤ M as the number of elements (“1”s) in m-th
layer. Denote hm,n, 1 ≤ n ≤ wm as the column index in H

of the n-th element, m-th layer. Additionally, we assume the
core pipeline is K stages.

As discussed above, the decoder processes all the “1”s in H
exactly once by processing layer-by-layer in each iteration, and
element-by-element in each layer. However, the order can be
arbitrary, which enables us to schedule the elements carefully
to minimize memory conflict. We have two ways to solve it.

• Layer permutation. We can assign which layer to be
processed first and which to be next. If two layers i, j
have 1s at totally different positions, i.e., such j, l do not
exist that hi,k = 1 and hj,l = 1, they tend to be assigned
as the adjacent layers with no conflict.

• Element permutation. In a certain layer, we can assign
which element to be processed first and which to be next.
If two adjacent layers i, j still have conflict, i.e., hi,k = 1
and hj,l = 1 for some k, l, then we can assign element k
to be first in layer i, and l to be last in layer j. By this
way, we increase the time interval between the conflicting
elements k and l.

Therefore, the memory conflict minimization problem is
exactly a scheduling problem, in which layer permutation
and element permutation should be designed to minimize the
number of idle pipeline clock insertions. We denote layer
permutation as m → λm, 1 ≤ m,λm ≤ M , and element
permutation of layer m as n → µm,n, 1 ≤ n, µm,n ≤ wm.

Based on the above definitions, a memory conflict oc-
curs between layer i, element k and layer j, elemen-
t l if the following conditions are satisfied: (1) layers
i, j are assigned to be adjacent, i.e., λj = λi + 1; (2)
hi,k = 1 and hj,l = 1; (3) the pipeline time inter-
val is less than pipeline stages, i.e., wi − µi,k + µj,l ≤
K. Further, we define the “conflict set” C as C(i, j) =
{(k, l)|elements (i, k) and (j, l) cause a memory conflict},
and the “conflict stages”, also the minimum number of idle
clocks inserted due to this conflict, as

c(i, k; j, l) = max{wi − µi,k + µj,l −K, 0} (4)

B. The Double-Layered TSP

This part introduces the mapping from the above memory
conflict minimization problem to a double-layered traveling
salesman problem (TSP). TSP is a famous NP-hard problem,
in which the salesman should find the shortest path to visit all
the n cities exactly once and finally return to the starting point.
Denote di,j as the distance between city i and city j. TSP can
be mathematically described as follows: given distance matrix
D = [di,j]n×n, find the optimal permutation of the city indices
x1, x2, ..., xn to minimize the loop distance,

min
(n−1∑

i=1

dxi,xi+1 + dxn,x1

)
(5)

Compared to layer permutation which can contribute most
part of the memory conflict reduction, element permutation
only deals with minor changes for the optimization when layer
permutation is already determined. Therefore, we map the
problem to a double-layered TSP, where layer permutation is
mapped to the first layer, and element permutation is mapped

Buffontus
高亮

Buffontus
高亮

