
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, MAY 2011 6

since it collects huge amount of bit error statistics of the
same decoding process, especially in the error floor region
when the BER is low (10−7 to 10−10). This motivates us
to implement the verification platform on GPU where many
decoders run parallel like hardware such as ASIC/FPGA to
provide statistics.

Fig. 5 shows our GPU architecture. CPU is used as the
controller, which puts the code into GPU constant memory,
raises the GPU kernels and gets back the statistics. While
in GPU grid, we implement the whole coding system for
each GPU block, including source generator, LDPC encoder,
AWGN channel, LDPC decoder and statistics. Our decoding
algorithm is layered MMSA. In each GPU block, we assign
zf threads to calculate new LLRSUM and LLREX of the zf
rows in each layer, where zf is the expansion factor of QC
LDPC. The zf threads cooperate to complete the decoding
job.

Device (GPU)

Host (CPU)

Kernel

Controler

Global

Memory

Block 1 Block 2 Block 3 Thread 1 Thread 2 Thread 3
Thread 4 Thread 5 Thread 6
Thread 7 Thread 8 Thread 9

……

……

Gen source bit

Shared Memory

Encode

Pass channel

Block 6

Constant

Memory

Get Qi , rji

Calculate qij

Update rji , Qi

Decode Iteration

Statistics

Thread 2
Grid

Block 4 Block 5 Block 6

Block 7 Block 8 Block 9

Fig. 5. GPU architecture of the BER simulation for LDPC code.

B. Algorithm and Procedure
This part introduces the procedure that implements the GPU

simulation, given by Algorithm 4. P ×Q blocks run parallel,
each simulating an individual coding system, where P is
the number of multi-processors (MP) on the device and Q
is the number of cores per MP. In each system, zf threads
cooperatively do the job of encoding, channel and decoding.
When decoding, the threads process data layer after layer, each
thread performing LMMSA for one row of this layer. The
procedure ends up with the statistics of P ×Q LDPC blocks.

C. Details and Instructions

• Ensure “coalesced access” when reading or writing global
memory, or the operation will be auto-serialized. In our
algorithm, the adjacent threads should access adjacent
L(Qi) and L(rji).

• Shared memory and registers are fast yet limited re-
sources and their use should be carefully planned. In our
algorithm, we store L(Qi) in shared memory and L(rji)
in registers due to the lack of resources.

• Make sure all the P × Q cores are running. This calls
for careful assignment of limited resources (i.e., warps,
shared memory, registers). In our case, we limit the
registers per thread to 16 and threads per block to 128,
or some of the Q cores on each MP will “starve” and be
disabled.

Algorithm 4 The GPU based LDPC simulation.
1: Read code H, G from GPU constant memory.
2: for P ×Q GPU blocks parallel do
3: for zf GPU threads parallel do
4: Source: Threads generate source bits cooperatively.
5: Encoder: Threads encode source bits cooperatively.
6: Channel: Threads add AWGN to coded bits cooperatively.
7: Decoder:
8: for iter = 1 to ITERMAX serially do
9: for layer = 1 to M serially do

10: Threads read L(Qi) and L(rji) from global memory.
11: Core: Each thread performs LMMSA for one row of

this layer within shared memory and registers.
12: Threads update L(Qi) and L(rji) to global memory.
13: end for
14: end for
15: Statistics: Threads check decoded bits cooperatively.
16: end for
17: end for
18: Write statistics of P ×Q LDPC blocks to global memory.
19: Return control to the host CPU.

VI. HARDWARE IMPLEMENTATION SCHEMES

A. Top-level Hardware Architecture

Our goal is to implement a multi-mode high-throughput QC-
LDPC decoder, which can support multiple code rates and
expansion factors on-the-fly. The proposed decoder consists
of three main parts, namely, the interface part, the execution
part and the control part. The top level architecture is shown
in Fig. 6.

The interface part buffers the input and output data as well
as handling the configuration commands. In the execution
part, the LLRSUM and LLREX are read out from the RAMs,
updated in the S parallel LMMSA cores, and written back to
the RAMs, thus forming the LLRSUM loop and the LLREX
loop, as marked red in Fig. 6. The control part generates
control signals, including port control, LLRSUM control,
LLREX control and iteration control.

Note that the reconfigurable switch network is designed
in the LLRSUM loop to support multi-mode feature. As to
achieve high-throughput, we propose the split-row MMSA
core, the early-stopping scheme and the multi-block scheme.
The split-row core has two data inputs and two data outputs,
hence it also “splits” the LLRSUM RAM and LLREX RAM
into two parts, meanwhile, two identical switch networks are
needed to shuffle the data simultaneously. We also propose
the offset-threshold decoding scheme to improve BER/BLER
performance. The above five techniques are described in detail
as follows.

B. The Reconfigurable Switch Network

A switch network is an S-input, S-output hardware struc-
ture that can put the input signals in the arbitrary order
at the output. Formally, given input signals x1, x2, . . . , xS

with data width W , the output of switch network has the
form xa1 , xa2 , . . . , xaS

, where a1, a2, . . . , aS is any desired
permutation of 1, 2, . . . , S. For the design of reconfigurable
LDPC decoders, two special kinds of output order are more
important, described as follows.

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮

Buffontus
高亮


