
A sample Implementation of LSTM+CNN for Extremist Classification  

A sample implementation of the proposed architecture that is LSTM+CNN is performed using 

Anaconda which provides free Jupyter notebook environment and also gives assistance about 

python 2.7 and 3.6 . The Jupyter notebook contains a series of cell that carry workable code, output, 

and descriptive text. For example, the code snapshot in Fig. S1 presents an executable code cell 

and its output. 

 

 

Fig. S1 A Code Cell with an Output 

 

The description about the code executed in the implementation section will be given as follows: 

Import certain Libraries: In Fig. S2 certain libraries are imported that are needed to perform 

different functions and tasks.  

 

Fig. S2 Import the required libraries 

Executable code 

Output 



Pandas Data Frame for Data Loading: After importing the pandas data frame the data is loaded 

into pandas data frame as shown in Fig. S3.  

 

Fig. S3 Data Loading into Pandas Data Frames 

Whereas the dataset required for the experimentation is presented in Fig. S4 which is the output of 

the above code snippets (Fig. S3)  

 

Fig. S4 Required Dataset 

 

Data-preprocessing: - 

In order to obtain better feature from our data we will do some of the basic pre-processing steps. 

So let’s discuss them one by one. 

 

Case Conversion: Fig. S5 depicts that case of all the tweets/reviews in the dataset are transformed 

into lowercase and it is the first step of preprocessing. 

 

 

 



Fig. S5 Case Conversion 

 

Removing Punctuation: Next punctuation is removed from text data to reduce the size of the data 

which will help to reduce extra information as shown in Fig. S6. 

 

 

 

Fig. S6 Remove punctuation 

 

Removal of Stop Word: We used a predefined library as shown in Fig. S7 to remove stopwords 

from our data as these commonly occurring word will affect the performance of the model.  

 

 

 

Fig. S7 Stopword removal. 

 

Rare words removal: Just as we remove stop words we have remove the rare words to improve 

the model performance depicted in Fig. S8. 

 



 

Fig. S8 Rare word removal. 

 

Splitting Data into Train and Test: After data preprocessing, the dataset is arranged into train and 

test set using scikit learn “train_test_split” [21] method. The purpose of train set is to train the 

model so that it will be able to learn the data and the test set is used to evaluate the performance 

of the model. Fig. S9 illustrates the code for train test split of data. 

 

 

Fig. S9 Train Test Split of Data 

 

Tokenization: Tokenization is the process in which sentences divided into words called as 

tokens. The tokenization is performed using keras Tokenizer API (Fig. S10). 

 



The output of above code snippets is as follows: 

 

 

Fig. S10 Dataset Tokenization. 

After having created the vocabulary we can convert the text to a list of integer indexes. This is 

done with the text_to_sequences method of the Tokenizer. Fig. S11 depicts text to sequence of 

integers conversion. 

 

 

Fig. S11 Text to sequence of integers 
 

Converting the target classes to numbers: We need to convert the target classes to numbers as 

well as shown in Fig S12. 

 

 

Fig. S12 Conversion of target classes 

 

Building a LSTM+CNN Learning Model: Fig. S13 depicts the code snapshots regarding the 

development of LSTM+CNN model. In order to build  LSTM-CNN model some important layers 

are also imported. The first layer is the embedding layer which acts as an input layer for the model. 

It consists of three parameters which are:  

 max_features(input_dim): max_features also known as input dimension represents the 

vocabulary size. It is the amount of top words selected from the dataset. 

 embed_dim(output_dim): It is also known as output dimension which describe the length 

of embedding vector. In our case, the value of embed_dim is 128 which means the size of 

vector is 128. 



 input_length: It shows the size of individual input sequences /post. 

The next layer is the LSTM layer which is the first hidden layer in LSTM-CNN model. This 

layer contain a parameter. 

 LSTM units: Size of LSTM hidden state. 

Then there is a convolutional layer which is the second hidden layer in CNN model. This layer 

contains following parameters. 

 filters: It is the amount of output filter within the convolutional layer. 

 kernel_size: It determine 1D convolutional window length. 

 padding: It has different values like “valid”, “casual” or “same”. When padding is same 

then the length of original input and output is same and when the value of padding is casual 

it produces widened convolutions. In case of valid it means no padding. 

 activation: relu activation function is used and it is a nonlinear operation. 

 

The third layer is the maxpooling layer. It contain the argument which are stated as:  

 pool_size: It specify maxpooling window size. 

Flatten is the next layer after maxpooling layer and its purpose is to create the column/single vector 

of a pooled feature map. After flatten the dense layer is used, which contain the sigmoid activation 

function. The mathematical equation of sigmoid function is 

(𝑥) =  1/1 + 𝑒−𝑥   

In sigmoid function the range of output probabilities will be from 0 to 1. Moreover, the compile 

method build the model for training. It involves the following parameters: 

 loss: It is an optimization score function. 

 optimizer: It presents an instance of an optimizer. 

 metrics: This parameter contains the metrics used for an evaluation. 

Lastly, the summary method will depict the summary of the model. 



 

Fig. S13 Developing a Deep Learning Model 

 

Model Summary: Fig. S14 shows the summary of the model which is generated using 

“print.summary()” function. 

 

Fig. S14 Summary of Model 



Fitting the Model: The “model.fit()” function is used to train the model on the training data as 

shown in Fig. S15. The parameters of the “model.fit()” method is given as follows: 

 X_train_seq: It covers training data. 

 Y_train_le: It covers a label (target) data. 

 epochs: This parameter contain epochs number for model training. It is the amount of 

iteration over the complete training samples. 

 Validation_split: The validation data is the parameter of the “model.fit()” that contains the 

data which will not pass through the training procedure.  

 Batch Size: The batch size is a hyperparameter which is an amount of training samples per 

forward or backward pass. Its default value is 32 (in Fig. S15). 

 

Fig. S15 Model Fitting 

 

Training Output: The output of the model during training is illustrated in Fig. S16. It shows the 

accuracy, validation accuracy and the loss associated with both the metrics. Moreover, the model 

is trained on 720 samples and validate on 81 samples. 

 

Fig. S16 Output during Training 

 

Model Evaluation: In Fig. S17, the performance of the model on a test set is evaluated using 

accuracy evaluation metric. The method used to perform evaluation is “model.evaluate()” whereas 

verbose is an argument of the evaluate function which contain an integer values like  0,1,2 where 

0 means silent,1 means progress bar,2 means 1 line per epoch. 

 



 

Fig. S17 Evaluation of the model 

 

Confusion Matrix: Confusion matrix is represented in the form of a table which is used to report 

the performance related with the model [23]. In order to use the confusion matrix it is necessary 

to import it from sci-kit learn library (Fig. S18). 

 

 

Fig. S18 Import Confusion Matrix 

 

The code snapshot in Fig. S19 shows that the creation of a variable cm is performed through calling 

a “confusion_matrix”. The “confusion_matrix” contains two parameters y_test_le and y_pred. So, 

a confusion matrix named as cm is defined in the below screenshot. 

 

Fig. S19 Creation of Confusion Matrix 

A confusion matrix is plotted using “plot_confusion_matrix” function (Fig. S20). 

https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/%5d.%20In


 

 

Fig. S20 Code on Plotting Confusion Matrix 

 



Now, the output of the code shown in Fig. 20 is illustrated in Fig. S21. In the plot (Fig. S21), 

predicted label is placed at x-axis and True label is placed at y-axis. The red cells depicts the 

accurate predictions and blue cells depicts inaccurate predictions. 

 

Fig. S21 Confusion Matrix 

Evaluation Metrics: Fig. S22 presents the code and its desired output for an evaluation metrics 

namely precision, recall and f1-score. The function “model.predict()” is used to perform prediction 

on test set. 

 

Fig. S22 Metrics for Evaluation. 

========================== 

Muhammad Zubair Asghar, PhD 

ORCID:  https://orcid.org/0000-0003-3320-2074 

Google Scholar: https://scholar.google.com.pk/citations?user=_CNMYU0AAAAJ&hl=en 

HEC Approved PhD Supervisor, ICIT, Gomal University, khyber Pakhtunkhwa (KP), Pakistan 

https://orcid.org/0000-0003-3320-2074
https://scholar.google.com.pk/citations?user=_CNMYU0AAAAJ&hl=en

