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A Sensitivity analysis of the homophily in the communi-
cation patterns of urban areas

We chose different percentiles to label areas as happy or unhappy. Then, we used
two-way Analysis of Variance (ANOVA) to compare the effect of using the differ-
ent percentiles on the strength of communication.

We tried percentiles 15, 20, 25, 40 and 50 and generated the results accordingly
in tables 1, 2, 3, 4 and 5 and the interaction plots are depicted in Figures 1 respec-
tively. In summary, homophily exists for all the chosen percentiles from 15% to
50%.

Main Effects
Variable F(1,52418) Pr(>F)
Source (Caller) 0.533 0.465
Receiver 0.935 0.334
Source * Receiver 72.733 0.000
Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.039 0.100
Happy | Unhappy 0.034 0.076
Unhappy Happy 0.034 0.075
Unhappy | Unhappy 0.042 0.107

Table 1: ANOVA results of normalized communication (threshold 15%)



Main Effects

Variable F(1,98656) Pr(>F)
Source (Caller) 0.051 0.821
Receiver 1.169 0.280
Source * Receiver 91.492 0.000
Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.037 0.101
Happy | Unhappy 0.033 0.079
Unhappy Happy 0.033 0.079
Unhappy | Unhappy 0.039 0.103

Table 2: ANOVA results of transformed and normalized communication (threshold

20%)

Main Effects
Variable F(1,163459) Pr(>F)
Source (Caller) 4.403 0.036
Receiver 6.829 0.009
Source * Receiver 61.711 0.000

Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.036 0.094
Happy | Unhappy 0.034 0.084

Unhappy Happy 0.034 0.082
Unhappy | Unhappy 0.038 0.101

Table 3: ANOVA results of normalized communication (threshold 25%)

Main Effects
Variable F(1,452976) Pr(>F)
Source (Caller) 8.222 0.004
Receiver 11.174 0.001
Source * Receiver 76.603 0.000

Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.035 0.086
Happy | Unhappy 0.033 0.085

Unhappy Happy 0.033 0.085
Unhappy | Unhappy 0.037 0.096

Table 4: ANOVA results of normalized communication (threshold 40%)
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Figure 1: Interaction Plots of Data Using Different Percentiles: (a) 15% (b) 20%
(¢) 25% (d) 40% (e) 50%
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Main Effects
Variable F(1,735801) Pr(>F)
Source (Caller) 0.560 0.454
Receiver 0.961 0.327
Source * Receiver 62.703 0.000
Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.036 0.089
Happy | Unhappy 0.034 0.089
Unhappy Happy 0.034 0.088
Unhappy | Unhappy 0.036 0.096

Table 5: ANOVA results of normalized communication (threshold 50%)

B The Distribution of Communication Data

As we reported in the main paper, the distribution of the outgoing communication
of areas (as shown in Figure 1(a) in the paper) is long tailed and could be well
approximated by a power law. We examined the distribution of aggregate commu-
nication between areas and we found that it is also skewed by nature as shown
in Figure 2(a). This might violate the normality assumption of ANOVA which re-
quires the distribution of the residuals to be normal (check Figure 2(b)). Since the
data is skewed by nature, we transformed the communication data using the natural
logarithm. The transformation has reduced the skewness of the distribution of the
communication and the residuals as shown in Figure 2(c&d).

After we transformed the data, we ran ANOVA to check whether our findings
of homophily still hold. We found that homophily still holds for many thresholds
from 10% to 50% as shown in Tables 6, 7, 8, 9 and 10. The interaction plots are
shown in Figure 3.

C Diversity of happiness within each area

We examined the diversity of happiness within each area by calculating the stan-
dard deviation of happiness in each area, and upon plotting the distribution of the
standard deviations in Figure 4, one can see that only few cells have standard de-
viations higher than 1.5. Hence, the existence of an area full of tweets with only
scores 1 and 9 (i.e. having a standard deviation around 4) is very unlikely. In fact,
the existence of areas with only scores less or equal to 3 and higher or equal to 7
(i.e. having a standard deviation of at least 2) is unlikely.
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Figure 2: Normality Assumption of ANOVA: We use the data that include areas
with lowest and highest 15% happiness scores (a) The distribution of aggregate
communication between areas (b) The Q-Q plot of residuals after running ANOVA
(c) The distribution of log-transformed aggregate communication between areas
(d) The Q-Q plot of log-transformed residuals after running ANOVA



Main Effects

Variable F(1,52418) Pr(>F)
Source (Caller) 0.022 0.882
Receiver 0.215 0.643
Source * Receiver 47.468 0.000
Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.039 0.100
Happy | Unhappy 0.034 0.076
Unhappy Happy 0.034 0.075
Unhappy | Unhappy 0.042 0.107

Table 6: ANOVA results of transformed and normalized communication (threshold

15%)

Main Effects
Variable F(1,98656) Pr(>F)
Source (Caller) 0.118 0.731
Receiver 6.424 0.011
Source * Receiver 40.509 0.000
Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.038 0.101
Happy | Unhappy 0.033 0.079
Unhappy Happy 0.033 0.079
Unhappy | Unhappy 0.039 0.103

Table 7: ANOVA results of transformed and normalized communication (threshold

20%)

Main Effects
Variable F(1,163459) Pr(>F)
Source (Caller) 14.570 0.000
Receiver 42.960 0.000
Source * Receiver 13.850 0.000

Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.036 0.094
Happy | Unhappy 0.034 0.082

Unhappy Happy 0.034 0.084
Unhappy | Unhappy 0.038 0.101

Table 8: ANOVA results of transformed and normalized communication (threshold

25%)




Table 9: ANOVA results of transformed and normalized communication (threshold

40%)

Table 10: ANOVA results of transformed and normalized communication (thresh-

old 50%)

Main Effects

Variable F(1,452976) Pr(>F)
Source (Caller) 1.333 0.248
Receiver 12.760 0.000
Source * Receiver 65.283 0.000

Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.035 0.086
Happy | Unhappy 0.033 0.085

Unhappy Happy 0.033 0.085
Unhappy | Unhappy 0.037 0.096

Main Effects
Variable F(1,735801) Pr(>F)
Source (Caller) 12.421 0.000
Receiver 2.263 0.133
Source * Receiver 70.119 0.000

Pairwise Comparison

From To Mean | Standard Deviation
Happy Happy 0.036 0.089
Happy | Unhappy 0.034 0.089

Unhappy Happy 0.034 0.088
Unhappy | Unhappy 0.036 0.096




Using a 15% for old normalized by same tweets
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Figure 3: Interaction Plots of Transformed Data Using Different Percentiles: (a)

15% (b) 20% (c) 25% (d) 40% (e) 50%
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Figure 4: The standard deviation of happiness within each cell

D Weighted Assortativity Mixing

To quantify the level of assortativity mixing in the previously constructed network,
we used a weighted version of the assortativity coefficient defined by [4]. We ad-
justed the way the coefficient is measured by incorporating the weights of the edges
between nodes. Let Y = {happy,unhappy} be the set of considered types, and let
e;; be the fraction of weights of edges that connect a node of type i € Y to another
node of type j € Y. Then:

Zei = 1

ij

Leta; =} ;e;; be the aggregated fractions of weights of edges that connect a node
of type i €Y to all nodes, and b; =} ; ¢;; be the aggregated fractions of weights of
edges that connect all nodes to nodes of type j € Y. Then, the weighted assortativity
coefficient is calculated as follows:

_ Xiei—Yidibi
1 =Y, aib;

A value of r = 0, indicates that there is no weighted assortative mixing (e;; =
a;b;), while a value of r = 1, indicates that there is a perfect weighted assortative
mixing (};e; = 1).

Note that while all of our analysis in the paper excludes self-edges, the assor-
tativity function assumes the existence of self-edges (it normalizes w.r.t all edges
including self-edges). Thus, we show the assortativity results for the cases when
self-edges are included and when they are excluded (for percentages 15, 20, 25,
40, and 50). In the paper, we report the value for 15% with self-edges. Table 11
shows the results.

r



Percentile | Without Self-edges | With Self-edges
15% 0.099 0.216
20% 0.075 0.165
25% 0.048 0.126
40% 0.033 0.081
50% 0.024 0.062

Table 11: Weighted assortativity coefficient for different percentiles and consider-
ing with(out) self-edges.

E Correlations between Happiness, Communications Ac-
tivities and Centrality Measures

Figure 5 shows the distribution of incoming/ outgoing calls/SMSs and the Internet
traffic per area. Each of the five distributions is long tailed, and part of it is well
approximated by power law. Additionally, one can observe the exponential cut-
off at the tail of all distributions, which is likely attributed to constraints on time,
attention, bandwidth, etc.

Figure 6 compares the happiness score of cells with the amounts of incoming
and outgoing calls and SMSs and Internet traffic of these cells. Although, as ex-
pected, the various communication metrics are highly correlated, none of them is a
significant predictor of happiness.

Figure 7 compares the happiness score of cells with the centrality measures
(e.g. in-Degree, betweenness, etc.) of calls’ network. Again, as expected, the vari-
ous centrality measures are highly correlated. However, they fail to exhibit signifi-
cant correlation with happiness. This implies that mere ability to mediate informa-
tion flow is not sufficient to influence happiness.

Figure 8 shows the network of calls (links) between the different areas (nodes)
in Milan. Red nodes represent happy areas and blue nodes represent unhappy areas.
Visual inspection highlights the presence of communities of areas that are domi-
nated by a particular class (happy or unhappy).

F Correlations between Happiness and Geographic Dis-
tance

We studied the effect of geographic distance on cell happiness score, by showing
the correlation between cell own happiness score and average neighbor’s happi-
ness score as a function of the distance between them. We chose to use Spearman’s
rank correlation since it has less constraints (e.g. the input data can be non-interval
scale) and, more importantly, it is more tolerant to the outliers compared to Pearson
correlation. If the correlation coefficient of a cell’s own happiness score and neigh-
bors’ happiness score show no relationship, we can conclude that homophily found
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Figure 5: (a) Distribution of incoming calls per area. (b) Distribution of outgo-
ing calls per area. (c¢) Distribution of incoming SMSs per area. (d) Distribution
of outgoing SMSs per area. (e) Distribution of Internet traffic per area. All the
five distributions are long tailed. An exponential drop at the tail of the distribution
can be noticed as well, and is likely attributed to some constraints.
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Relationship between Happiness and Calls/SMSs/Internet
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Figure 6: Scatter plot matrix of correlations between happiness and
calls/SMSs/Internet. Points represent cells with non-zero Happiness score. Com-
munication metrics are highly correlated with each others. However, none of them
seems to make a good predictor of happiness.
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Relationship between Happiness and Centrality Measures
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Figure 7: Scatter plot matrix of correlations between happiness and centrality
measures of calls’ network. Points represent cells with non-zero Happiness score.
None of the centrality measures shows significant correlation with happiness.
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Figure 8: Network of calls between happy/unhappy areas in Milan. Nodes rep-
resent areas, and directed edges (i.e. arcs) represent calls between these areas.
Happy areas are in red, while unhappy areas are in blue. A red arc connects two red
nodes, a blue arc connects two blue nodes, and a purple arc connects a red node to
a blue one, or vice versa.
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in our results do not depend on the geographic distance between cells’ location.

Figure 9 shows the correlation values given Euclidean (a),(c) and Manhattan
(b),(d) metrics for distances calculations. Sub-figures (c) and (d) show the cases
where only the cells with the highest and lowest 15% happiness values are kept. In
all cases, one can notice that the correlation between the happiness of a cell and
its neighbors exhibits frequent fluctuations around zero on the distance scale. This
suggests that homophily based on proximity is very insignificant.

G Studying Homophily on Community Level

We applied a modularity-maximizing algorithm to categorize cells into communi-
ties. In our experiment, multi-level modularity optimization algorithm [1] is cho-
sen to determine communities based on the telecommunication data. Modularity
is a quality measure for graph clustering proposed by Newman [6, 5]. For a graph
G = (V,E), given a community structure, and a collection of disjoint subset of
vertices V = {V,V»,V3...,V;}, the modularity of community structure is defined
as:

Wl'Wj

) 1
Modularity(V) = g;(Ww - W)&j
where
5 { 1 (if i, j are in the same community)
Y0 (otherwise)
i,jev

w; = weighted degree of node i
w; = weighted degree of node j

W;; = weight of link from node i to node j
1

As we can see, modularity is defined as the fraction of links that fall within
communities minus the expected value of the same quantity if links are assigned
at random, conditional on the given community memberships and the degrees of
vertices. The value of modularity is between —0.5 to 1. When the modularity is
high, it shows that the community structure have strong intra-community interac-
tion and weak inter-community interaction. On the contrary, the community struc-
ture has low modularity when intra-community interaction is weak and the inter-
community interaction is strong.

Usually, we assume cells in the same community have strong interactions.
Therefore, we should apply some algorithm to maximize modularity for finding

15
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Figure 9: The Spearman correlation coefficient between cell’s happiness and
its neighbor with different distance: (a) Euclidean distance, no threshold, (b)
Manhattan distance, no threshold, (c¢) Euclidean distance, threshold = 15%,
(d) Manhattan distance, threshold = 15%. The correlation between the happi-
ness of a cell and its neighbors exhibits frequent fluctuations around zero on the
distance scale, which suggests the insignficant effect of proximity on homophily.
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the best community structure. The multi-level modularity optimization, also called
Louvain method, is a greedy optimization method that attempts to optimize the
modularity of the network. The procedure can be divided into two iterative phases.
First, each node will be assigned to a distinct community. As a result, the ini-
tial community number will equal to the number of nodes the graph contained.
Then, for each node k, we evaluate the gain of modularity by removing node k
from its community then placing it in a neighbor’s community. The node k will
be placed in the neighbor’s community if this increases modularity. Otherwise,
the node k will remain in the original community. If no more merging procedure
can be done to increase the modularity, then the current communities’ structure
will be the best one to represent network community. Previous research has shown
that multi-level modularity optimization is simple, efficient and easy-to-implement
method for identifying communities in large networks [3, 2, 7]. The time capacity
is O(nlogn) and the runtime is near linear when the number of nodes is approxi-
mately equal to number of edges (sparse network).

After we found communities, we studied the effect of community size on the
average and the standard deviation of a community’s happiness score. If the stan-
dard deviation is small, then there is evidence for homophily on community level.
Additionally, we are interested in finding whether average cell happiness score
will change as the size of the community changes. The community size is defined
as the number of cells in it. We consider different percentiles for labeling cells as
happy/unhappy.

For comparison, we generate random communities of similar sizes of the com-
munities we have. These are formed by randomly assigning cells into communities.
We run the process for 200 times then take the average value then label both real
and random communities. The results are shown in Figure 10 and Figure 11.

Figure 10 shows that small-size communities seem to have slightly higher hap-
piness score on average compared to the random communities. Overall, the happi-
ness value tend to decrease with the increase in community’s size, for all percent-
ages.

Figure 11 shows that detected communities seem to have lower standard de-
viations than random communities. This provides an evidence for the existence of
homophily on community level. With the increase of the community size, the stan-
dard deviation of happiness score increases for both detected and random commu-
nities. As the blue lines in Figure 11 (a)-(b) show, the standard deviation slightly
increases for 15% and 20% as the size of the community increases, while the blue
lines show that the standard deviation stays constant or decreases for the other per-
centages (Figure 11 (c)-(e)) as the size of the community increases.

H Number of Tweets, Cells, and Communication Links

Table 12 shows the number of tweets, cells and links during each stage of prepro-
cessing.
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Figure 10: The average happiness of a community as a function of its size.
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axis denotes average happiness score of all cells within this community. The green
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Set | Description Cardinality
[A] | raw tweets 478,000
[B] | tweets from [A] mapped inside the grid 404,000
[C] | tweets from [A] in English or Italian 382,000
[D] | tweets from [C] with happiness score =0 55,000
[E] | tweets from [C] with happiness score > 0 327,000
[F] | tweets at the intersection of [B] and [E] 274,000
[G] | cells with happiness score > 0 (using tweets from [F]) 5,580
[H] | cells from [G] with > 10 tweets 2,321
[J] | cells from [G] with > 10 unique users 1,213
[K] | cells from [J] within top/bottom 15% of happiness 363
[L] | links with weight > 0.1 including self-edges 2,343,000
[M] | links from [L] with weight > 0.1 without self-edges 2,338,000
[N] | links from [M] with weight > 0.1 (connecting the cells in [K]) 52,000

Table 12: Number of tweets, cells and links during each stage of preprocessing.
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