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1 Relative Costs of Acquisition and Model Development
In practice, price points for acquisition of external data are known, since these

are to be negotiated with the external data provider. Cost-to-company of a data

science development team to make sophisticated models can be determined as well.

Since the derivation of these values is outside the scope of this paper, we assume a

set of values for each of data acquisition and modeling component for illustrative

purposes. These values can be swapped out with the appropriate values in a real

use-case scenario. Our framework can also allow for conducting scenario analyses

on different cost functions.

The NPV cost of model development can be directly added to the NPV cost of

prediction errors, since it can be assumed that the same cost CModel gets added to

every batch of prediction tasks. Mathematically, we are just linearly decomposing

the Total Cost from Main Paper Subsection 3.3 to its constituent components. From

an accounting perspective the investment into model development would include

salaries and benefits for the team, data storage and management costs, compute

infrastructure, etc. The returns component of this is not so cut-and-dry. Returns

are not necessarily immediate, depend on potential for the model to be improved,

and are subject to externalities.

2 Classification Techniques
As a dual to the cases in Main Paper Subsection 3.1, we use the following classifi-

cation techniques: Decision Tree (DT), Cost Sensitive Decision Tree (CSDT), CS-DT

with Dynamic Cost Matrix (CSDT-dyn). CSDT uses a static cost matrix, whereas

its dynamic counterpart CSDT-dyn has a cost matrix that is dependent on NPV.

Detailed discussion on these particular costs is in Main Paper Subsection 3.3. To

simulate an increasing complexity of the model used, we compare varying degrees

of model complexity in the underlying machine learning model.

Main Paper Subsection 3.6 identifies the key classifiers being considered. The

implementations for each classifier used in this paper are as below:

• DT: C4.5 classifier [1]

• CSDT: A MetaCost wrapper around DT [2]

• CSDT-dyn: A MetaCost wrapper around DT, but with varying cost matrix

Motivated by the above concept of dynamic cost matrices, we introduce the notion

of a classifier which uses CMmod as the cost matrix built into its training process.

We call this classifier scheme CSDT-dyn since it is a dynamic cost sensitive decision

tree.
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3 Discount Rate
An important parameter for NPV is the Discount rate. It is an indicator of op-

portunity cost of the investment that went into acquiring external data or model

development. Upon increasing this discount rate, we implicitly say that $X is now

worth less in the future than it was before. The discount rate is a direct (monotonic)

indicator of how severely one devaluates costs in the future. The monotonicity of

this argument emphasizes the value of immediate gains. An intuitive, but simplistic,

picture of this idea would be that a strategy which makes $X worth of misclassifi-

cation errors in t = t′ is preferable over one which makes $X worth misclassification

errors at some t′′ < t′ (for a constant discount rate).

4 Experimental Role of Cost Factor
In Main Paper Subsection 3.3, we use the idea of heterogeneous costs of false neg-

atives to false positives, which we call η. This is an important parameter in im-

balanced class learning. A classifier trained with low η in mind would permit more

false negatives than one with a high value of η. The tweaking of this parameter

empowers the user to directly plug in their cost model for false negatives versus

false positives. In case of variable cost models, one can use the approach proposed

in Main Paper Subsection 3.5 to obtain an estimate of η from the training data.

5 Experimental Data Details
UCI data Simulating External Data To simulate “external data” in a dataset where

we know all the feature and instance information, we perform a hold-off in the in-

stance space or the feature space or both as applicable. The held-off data is reintro-

duced as “external data”, available at a price. To mitigate any statistical sampling

and partitioning bias, this is repeated for multiple iterations with different hold-offs

and the entire set of experiments is repeated with a shuffled instance space. The

amount of data reintroduced from the hold-off demonstrates how much external

data one needs to invest in. This enables us to compare not only singular strate-

gies, but also hybrid strategies involving model development of a certain degree in

conjunction with a certain model of external data.

Medicare Data The following delineation was used in order to separate doctors

from other health care professionals:

• Doctor: MD, DDS, DDM, DPM, PSY, PT, DO, OD, MNT, DC, and CP

• others: OT, SCW, AU, AA, PA, CSW, CNS, CNA, LPN, LVN, RN, BSN,

MSN, CRNA, CNM, COHN, NP, and NR

In order to eliminate features which would be directly indicative of whether the

professional is a doctor or not, we removed the school name and specialization

fields from the data. For example, if a certain provider’s Primary Specialization is

“General Surgery”, it is a direct indicator that they are a doctor.

Open City Data At any given time, the most recent data on the website is about

seven days old. This dataset is manually typed into the CLEAR (Citizen Law En-

forcement Analysis and Reporting) system by the Chicago Police Department. We

have 250,000 instances of crime reports which span over 5 years (2010-14). We pre-

dict in increments across years in order to batch our results. The dataset contains a
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rich array of features about each reported incident. Relevant to the prediction prob-

lem are features like date, time, location and type of incident. The data also contains

a record of softer details like description of crime, location and the circumstances

surrounding it.

The external dataset has features including the percent of housing that is crowded,

households that are below poverty, individuals at or above the age of 16 who are

unemployed, individuals younger than 18 or older than 64, per capita incomes, and

a “hardship index”.

6 NPV Evaluation for External Data Strategies

Here we list the full tabular dollar values of the external instance strategies when

applied to the various datasets in this paper.

Pendigits Dataset First we consider the pendigits dataset for which (by simula-

tion), both Case B and C are possible in terms of external data. Since the data has

been simulated, we can see a sweep in terms of how much external data can/should

be used. This is not the case for the rest of the datasets, where the external data is

in the form of external features.

From Table 1, we see that the baseline costs are only a function of the classification

technique used. This is to be expected since the baseline is calculated on what the

NPV costs are without any external data. As the cost of external data increases,

it becomes less feasible to make a misprediction, especially a false negative and so

the trend in each row is

Medicare Data For the Medicare data, only the external transactional data is

available. This is an example of timed batches with queries for external feature

data, making it an example of Case D.

Open City Data Lastly, Open City Data uses external feature data from an ag-

gregated set of indicators made available to it in one initial dump. This is still an

example of Case D external data, but the insights from it are very different from

those in the Medicare data.

7 More on Feasibility

For a given cost factor, feasibility is a convex-bound function of external data costs

and model development costs, i.e. if external data at $X is infeasible, then for the

same set of parameters, external data at a price greater than $X+∆X is guaranteed

to be infeasible.

On the contrary, it should be noted that factors such as predictive performance

and cost factors do not offer convex guarantees in optimizing NPV costs. This means

that 1) increasing increasing the cost factor, and/or 2) adding more external data

instances does not guarantee lower NPVs of costs. Both of these are confirmed in

Figures 6 and 8 from the Main Paper.
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8 The special case of free external data
In the special case of free external data instances in Figure 3, the simple decision

tree can still turn out to be comparatively infeasible if too few external instances

are introduced. This can solely be attributed to the NPV of prediction error costs

being higher than baseline, since the data costs are factored out.

In the case of Medicare data, free external data would be helpful in formulating a

greatly feasible strategy. More importantly, the model development scenario leading

up to a dynamic cost matrix decision tree outweighs the free external data scenario.

For Open City Data, free external data immediately pays off by brushing roughly

$40,000 off the baseline NPV. However, it shows its usefulness when used in con-

junction with model development.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
SN and NVC conceived of and designed the research. SN implemented the empirical analysis. SN and NVC wrote

the paper.

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. 1447795.

Author details
1iCeNSA, Department of Computer Science and Engg., University of Notre Dame, Notre Dame, IN 46556, USA. 2 ,

, , .

References
1. Quinlan, J.R.: Bagging, boosting, and c4. 5. In: AAAI/IAAI, Vol. 1, pp. 725–730 (1996)

2. Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In: Proceedings of the Fifth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 155–164 (1999). ACM

Tables

Table 1 Net Present Values for External Instance Strategies. For the pendigits dataset, various
NPVs for each scenario are enumerated here. Case B is for transactional batch-wise instances of
external data, whereas Case C represents equivalent one-time dumps of external instances of
external data.

Ext Data
Technique

Fraction Baseline External Data Costs (per instance)
Strategy external Costs 0 0.01 0.05 0.25 0.5 1 5 10 50

0.2 1705.34 1705.34 1712.48 1748.21 1791.07 1883.95 2598.41 3498.63 10678.92
0.5 1702.43 1702.43 1723.86 1809.59 1923.91 2145.39 3945.82 6189.21 24143.51
1 1151.26 1158.41 1194.13 1372.75 1594.23 2044.34 5638.05 10124.84 46033.44
2 1224.12 1238.41 1309.86 1667.09 2117.19 3017.41 10197.70 19171.28 90988.46

DT

5

1453.611

851.03 893.90 1072.51 1972.73 3094.42 5337.82 23292.11 45733.20 225269.03
0.2 1033.60 1033.60 1040.74 1076.47 1119.33 1212.21 1926.67 2826.89 10007.18
0.5 498.40 498.40 519.83 605.57 719.88 941.36 2741.79 4985.19 22939.48
1 698.66 705.80 741.53 920.14 1141.62 1591.73 5185.45 9672.23 45580.83
2 659.30 673.59 745.04 1102.27 1552.37 2452.59 9632.88 18606.45 90423.64

B

CSDT

5

844.639

135.89 178.76 357.37 1257.59 2379.29 4622.68 22576.98 45018.06 224553.89
0.2 1553.25 1555.25 1566.25 1622.25 1691.25 1829.25 2935.25 4317.25 15374.25
0.5 1161.39 1167.39 1195.39 1333.39 1506.39 1852.39 4616.39 8071.39 35713.39
1 1029.03 1042.03 1098.03 1374.03 1720.03 2411.03 7939.03 14850.03 70134.03
2 1226.22 1253.22 1364.22 1917.22 2608.22 3990.22 15047.22 28868.22 139436.22

DT

5

1453.611

512.62 581.62 857.62 2239.62 3967.62 7422.62 35064.62 69617.62 346037.62
0.2 440.50 442.50 453.50 509.50 578.50 716.50 1822.50 3204.50 14261.50
0.5 371.45 377.45 405.45 543.45 716.45 1062.45 3826.45 7281.45 34923.45
1 598.02 611.02 667.02 943.02 1289.02 1980.02 7508.02 14419.02 69703.02
2 529.19 556.19 667.19 1220.19 1911.19 3293.19 14350.19 28171.19 138739.19

C

CSDT

5

844.639

634.29 703.29 979.29 2361.29 4089.29 7544.29 35186.29 69739.29 346159.29

Table 2 Net Present Values for Medicare data. This dataset is an ideal example of developing an
in-house model instead of acquiring external data.

External Data Cost (per query)
Technique

In-house
NPV 0 0.1 0.5 1 5 10

DT 46,435.26 7,275.04 7,886.83 10,333.97 13,392.89 37,864.29 68,453.54
CSDT 5,754.58 8,412.35 9,024.14 11,471.28 14,530.20 39,001.60 69,590.85
CSDT-dyn 492.44 7,632.76 8,244.55 10,691.69 13,750.61 38,222.01 68,811.26
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Table 3 Net Present Values for the Open City Data. This dataset clearly benefits from adding
external data.

External Data Cost (per query)
Technique

In-house
NPV 0 0.01 0.1 0.25 0.5

DT 189,050.15 149,642.63 151,538.02 168,596.56 197,027.46 244,412.30
CSDT 92,878.37 73,888.21 75,783.60 92,842.14 121,273.04 168,657.88
CSDT-dyn 98,102.80 73,882.00 75,777.39 92,835.93 121,266.84 168,651.67
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