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S1 Appendix: Computational methods
All of the code to perform these tests is available and document on GitHub. The
repository can be found here: https://github.com/andyreagan/sentiment-analysis-comparison.

Stem matching

Of the dictionaries tested, both LIWC and MPQA use “word stems”. Here we
quickly note some of the technical difficulties with using word stems, and how we
processed them, for future research to build upon and improve.

An example is abandon*, which is intended to the match words of the standard
RE form abandon[a-z]*. A naive approach is to check each word against the reg-
ular expression, but this is prohibitively slow. We store each of the dictionaries
in a “trie” data structure with a record. We use the easily available “marisa-trie”
Python library, which wraps the C++ counterpart. The speed of these libraries
made the comparison possible over large corpora, in particular for the dictionaries
with stemmed words, where the prefix search is necessary. Specifically, the “trie”
structure is 70 times faster than a regular expression based search for stem words.
In particular, we construct two tries for each dictionary: a fixed and stemmed trie.
We first attempt to match words against the fixed list, and then turn to the prefix
match on the stemmed list.

Regular expression parsing

The first step in processing the text of each corpora is extracting the words from

the raw text. Here we rely on a regular expression search, after first removing some

punctuation. We choose to include a set of all characters that are found within

the words in each of the six dictionaries tested in detail, such that it respects the

parse used to create these dictionaries by retaining such characters. This takes the

following form in Python, for raw_text as a string (note, pdflatex renders correctly

locally, but arXiv seems to explode the link match group):

punctuation_to_replace = ["-—=", "-=" n2on]

for punctuation in punctuation_to_replace:

raw_text = raw_text.replace(punctuation," ")

words = [x.lower() for x in re.findall(x"(?:[0-9][0-9,\.]1*[0-9]) |
(?:http:// D\w\. /\-\?\&\#]+) |
(7: D\w\C\#\’\&\I\ [14) |
(7:[0}/3D;p) | ’\-0x#~_0\\P(0:0{X$ [=<>\I1*BI+)",

raw_text,flags=re.UNICODE)]
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S2 Appendix: Continued individual comparisons

Picking up right where we left off in Section , we next compare ANEW with the other
dictionaries. The ANEW-WK comparison in Panel I of Fig. 1 contains all 1030 words
of ANEW, with a fit of hangw (w) = 1.07xhwk (w)—0.30, making ANEW more pos-
itive and with increasing positivity for more positive words. The 20 most different
scores are (ANEW ,WK): fame (7.93,5.45), god (8.15,5.90), aggressive (5.10,3.08),
casino (6.81,4.68), rancid (4.34,2.38), bees (3.20,5.14), teacher (5.68,7.37), priest
(6.42,4.50), aroused (7.97,5.95), skijump (7.06,5.11), noisy (5.02,3.21), heroin
(4.36,2.74), insolent (4.35,2.74), rain (5.08,6.58), patient (5.29,6.71), pancakes
(6.08,7.43), hospital (5.04,3.52), valentine (8.11,6.40), and book (5.72,7.05). We
again see some of the same words from the LabMT comparisons with these dictio-
naries, and again can attribute some differences to small sample sizes and differing
demographics.

For the ANEW-MPQA comparison in Panel J of Fig. 1 we show the same matched
word lists as before. The happiest 10 words in ANEW matched by MPQA are:
clouds (6.18), bar (6.42), mind (6.68), game (6.98), sapphire (7.00), silly (7.41),
flirt (7.52), rollercoaster (8.02), comedy (8.37), laughter (8.45). The least happy 5
neutral words and happiest 5 neutral words in MPQA, matched with MPQA, are:
pressure (3.38), needle (3.82), quiet (5.58), key (5.68), alert (6.20), surprised (7.47),
memories (7.48), knowledge (7.58), nature (7.65), engaged (8.00), baby (8.22). The
least happy words in ANEW with score +1 in MPQA that are matched by MPQA
are: terrified (1.72), meek (3.87), plain (4.39), obey (4.52), contents (4.89), patient
(5.29), reverent (5.35), basket (5.45), repentant (5.53), trumpet (5.75). Again we
see some very questionable matches by the MPQA dictionary, with broad stems
capturing words with both positive and negative scores.

For the ANEW-LIWC comparison in Panel K of Fig. 1 we show the same matched
word lists as before. The happiest 10 words in ANEW matched by LIWC are: lazy
(4.38), neurotic (4.45), startled (4.50), obsession (4.52), skeptical (4.52), shy (4.64),
anxious (4.81), tease (4.84), serious (5.08), aggressive (5.10). There are only 5 words
in ANEW that are matched by LIWC with LIWC score of 0: part (5.11), item (5.26),
quick (6.64), couple (7.41), millionaire (8.03). The least happy words in ANEW with
score +1 in LIWC that are matched by LIWC are: heroin (4.36), virtue (6.22), save
(6.45), favor (6.46), innocent (6.51), nice (6.55), trust (6.68), radiant (6.73), glamour
(6.76), charm (6.77).

For the ANEW-Liu comparison in Panel L of Fig. 1 we show the same matched
word lists as before, except the neutral word list because Liu has no explicit neutral
words. The happiest 10 words in ANEW matched by Liu are: pig (5.07), aggressive
(5.10), tank (5.16), busybody (5.17), hard (5.22), mischief (5.57), silly (7.41), flirt
(7.52), rollercoaster (8.02), joke (8.10). The least happy words in ANEW with score
+1 in Liu that are matched by Liu are: defeated (2.34), obsession (4.52), patient
(5.29), reverent (5.35), quiet (5.58), trumpet (5.75), modest (5.76), humble (5.86),
salute (5.92), idol (6.12).

For the WK-MPQA comparison in Panel P of Fig. 1 we show the same matched
word lists as before. The happiest 10 words in WK matched by MPQA are: cutie
(7.43), pancakes (7.43), panda (7.55), laugh (7.56), marriage (7.56), lullaby (7.57),
fudge (7.62), pancake (7.71), comedy (8.05), laughter (8.05). The least happy 5
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neutral words and happiest 5 neutral words in MPQA, matched with MPQA,
are: sociopath (2.44), infectious (2.63), sob (2.65), soulless (2.71), infertility (3.00),
thinker (7.26), knowledge (7.28), legacy (7.38), surprise (7.44), song (7.59). The
least happy words in WK with score +1 in MPQA that are matched by MPQA are:
kidnapper (1.77), kidnapping (2.05), kidnap (2.19), discriminating (2.33), terrified
(2.51), terrifying (2.63), terrify (2.84), courtroom (2.84), backfire (3.00), indebted
(3.21).

For the WK-LIWC comparison in Panel Q of Fig. 1 we show the same matched
word lists as before. The happiest 10 words in WK matched by LIWC are: geek
(5.56), number (5.59), fiery (5.70), trivia (5.70), screwdriver (5.76), foolproof (5.82),
serious (5.88), yearn (5.95), dumpling (6.48), weeping willow (6.53). The least hap-
py 5 neutral words and happiest 5 neutral words in LIWC, matched with LIWC,
are: negative (2.52), negativity (2.74), quicksand (3.62), lack (3.68), wont (4.09),
unique (7.32), millionaire (7.32), first (7.33), million (7.55), rest (7.86). The least
happy words in WK with score +1 in LIWC that are matched by LIWC are: hero-
in (2.74), friendless (3.15), promiscuous (3.32), supremacy (3.48), faithless (3.57),
laughingstock (3.77), promiscuity (3.95), tenderfoot (4.26), succession (4.52), dyna-
mite (4.79).

For the WK-Liu comparison in Panel R of Fig. 1 we show the same matched
word lists as before, except the neutral word list because Liu has no explicit neutral
words. The happiest 10 words in WK matched by Liu are: goofy (6.71), silly (6.72),
flirt (6.73), rollercoaster (6.75), tenderness (6.89), shimmer (6.95), comical (6.95),
fanciful (7.05), funny (7.59), fudge (7.62), joke (7.88). The least happy words in
WK with score +1 in Liu that are matched by Liu are: defeated (2.59), envy (3.05),
indebted (3.21), supremacy (3.48), defeat (3.74), overtake (3.95), trump (4.18),
obsession (4.38), dominate (4.40), tough (4.45).

Now we’ll focus our attention on the MPQA row, and first we see comparisons
against the three full range dictionaries. For the first match against LabMT in Panel
D of Fig. 1, the MPQA match catches 431 words with MPQA score 0, while LabMT
(without stems) matches 268 words in MPQA in Panel S (1039/809 and 886/766 for
the positive and negative words of MPQA). Since we’ve already highlighted most of
these words, we move on and focus our attention on comparing the +1 dictionaries.

In Panels V-X, BB-DD, and HH-JJ of Fig. 1 there are a total of 6 bins off of
the diagonal, and we focus out attention on the bins that represent words that have
opposite scores in each of the dictionaries. For example, consider the matches made
my MPQA in Panel BB: the words in the top left corner and bottom right corner
with are scored in a opposite manner in LIWC, and are of particular concern. Look-
ing at the words from Panel W with a +1 in MPQA and a -1 in LIWC (matched by
LIWC) we see: stunned, fiery, terrified, terrifying, yearn, defense, doubtless, fool-
proof, risk-free, exhaustively, exhaustive, blameless, low-risk, low-cost, lower-priced,
guiltless, vulnerable, yearningly, and yearning. The words with a -1 in MPQA that
are +1 in LIWC (matched by LIWC) are: silly, madly, flirt, laugh, keen, superi-
ority, supremacy, sillily, dearth, comedy, challenge, challenging, cheerless, faithless,
laughable, laughably, laughingstock, laughter, laugh, grating, opportunistic, joker,
challenge, flirty.

In Panel W of 1, the words with a +1 in MPQA and a -1 in Liu (matched by Liu)
are: solicitude, flair, funny, resurgent, untouched, tenderness, giddy, vulnerable, and
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joke. The words with a -1 in MPQA that are +1 in Liu, matched by Liu, are: supe-
riority, supremacy, sharp, defeat, dumbfounded, affectation, charisma, formidable,
envy, empathy, trivially, obsessions, and obsession.

In Panel BB of 1, the words with a +1 in LIWC and a -1 in MQPA (matched by
MPQA) are: silly, madly, flirt, laugh, keen, determined, determina, funn, fearless,
painl, cute, cutie, and gratef. The words with a -1 in LIWC and a +1 in MQPA,
that are matched by MPQA, are: stunned, terrified, terrifying, fiery, yearn, terrify,
aversi, pressur, careless, helpless, and hopeless.

In Panel DD of 1, the words with a -1 in LIWC and a +1 in Liu, that are matched
by Liu, are: silly, and madly. The words with a +1 in LIWC and a -1 in Liu, that
are matched by Liu, are: stunned, and fiery.

In Panel HH of 1, the words with a -1 in Liu and a +1 in MPQA, that are matched
by MPQA, are: superiority, supremacy, sharp, defeat, dumbfounded, charisma, affec-
tation, formidable, envy, empathy, trivially, obsessions, obsession, stabilize, defeat-
ed, defeating, defeats, dominated, dominates, dominate, dumbfounding, cajole, cute-
ness, faultless, flashy, fine-looking, finer, finest, panoramic, pain-free, retractable,
believeable, blockbuster, empathize, err-free, mind-blowing, marvelled, marveled,
trouble-free, thumb-up, thumbs-up, long-lasting, and viewable. The words with a
41 in Liu and a -1 in MPQA, that are matched by MPQA, are: solicitude, flair,
funny, resurgent, untouched, tenderness, giddy, vulnerable, joke, shimmer, spurn,
craven, aweful, backwoods, backwood, back-woods, back-wood, back-logged, back-
aches, backache, backaching, backbite, tingled, glower, and gainsay.

In Panel II of 1, the words with a +1 in Liu and a -1 in LIWC, that are
matched by LIWC, are: stunned, fiery, defeated, defeating, defeats, defeat, doubt-
less, dominated, dominates, dominate, dumbfounded, dumbfounding, faultless, fool-
proof, problem-free, problem-solver, risk-free, blameless, envy, trivially, trouble-free,
tougher, toughest, tough, low-priced, low-price, low-risk, low-cost, lower-priced,
geekier, geeky, guiltless, obsessions, and obsession. The words with a -1 in Liu and a
+1 in LIWC, that are matched by LIWC, are: silly, madly, sillily, dearth, challeng-
ing, cheerless, faithless, flirty, flirt, funnily, funny, tenderness, laughable, laughably,
laughingstock, grating, opportunistic, joker, and joke.

In the off-diagonal bins for all of the +1 dictionaries, we see many of the same
words. Again MPQA stem matches are disparagingly broad. We also find matches
by LIWC that are concerning, and should in all likelihood be removed from the
dictionary.
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S3 Appendix: Coverage for all corpuses
We provide coverage plots for the other three corpuses.
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Figure S1 Coverage of the words on twitter by each of the dictionaries.
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Figure S2 Coverage of the words in Google books by each of the dictionaries.
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Figure S3 Coverage of the words in the New York Times by each of the dictionaries.
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S4 Appendix: Sorted New York Times rankings
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S5 Appendix: Movie Review Distributions

Here we examine the distributions of movie review scores. These distributions are

each summarized by their mean and standard deviation in panels of Figure 2 for

each dictionary. For example, the left most error bar of each panel in Figure 2 shows

the standard deviation around the mean for the distribution of individual review

scores (Figure S6).
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S6 Appendix: Google Books correlations and word shifts
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Figure S9 Google Books correlations. Here we include correlations for the google books time
series, and word shifts for selected decades (1920's,1940's,1990's,2000's).
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Figure S10 Google Books shifts in the 1920’s against the baseline of Google Books.
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Figure S11 Google Books shifts in the 1940’'s against the baseline of Google Books.

Per word average happiness shift
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A: LabMT Wordshift

Google Books as a whole happiness: 5.87
1990°s happiness: 5.88
Why 1990's are happier than Google Books as a whole:

Word Rank

B: ANEW Wordshift

Google Books as a whole happiness: 6.19
1990 happiness: 6.18

Why 1990’ are less happy than Google Books as a whol

C: WK Wordshift

Google Books as a whole happiness: 5.98
1990s happiness: 5.97

Why 1990’s are less happy than Google Books as a whol
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Figure S12 Google Books shifts in the 1990's against the baseline of Google Books.
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A: LabMT Wordshift

Google Books as a whole happiness: 5.87

2000’s happiness: 5.88

Why 2000's are happier than Google Books as a whole:

B: ANEW Wordshift

Google Books as a whole happiness: 6.19
2000's happiness: 6.20
Why 2000's are happier than Google Books as a whole:

C: WK Wordshift

Google Books as a whole happiness: 5.98
2000’s happiness: 5.99
Why 2000's are happier than Google Books as a whole:
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D: MPQA Wordshift
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2000 happiness: 0.09
Why 2000’ are happier than Google Books as a whole:
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Figure S13 Google Books shifts in the 2000’s against the baseline of Google Books.
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S7 Appendix: Additional Twitter time series, correlations, and
shifts

First, we present additional Twitter time series:

— LabMT

— ANEW

0.6 — Warriner

— uwc

— MPoA
Liu

0.4

0.2

0.0F

2009 2010 2011 2012 2013 2014 2015

Figure S14 Normalized time series on Twitter using Ay, of 1.0 for all. For resolution of 3 hours.
We do not include any of the time series with resolution below 3 hours here because there are too
many data points to see.

038
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Figure S15 Normalized time series on Twitter using Ay, of 1.0 for all. For resolution of 12 hours.

Next, we take a look at more correlations:

Now we include word shift graphs that are absent from the manuscript itself.

Finally, we include the results of each dictionary applied to a set of annotated
Twitter data. We apply sentiment dictionaries to rate individual Tweets and classify
a Tweet as positive (negative) if the Tweet rating is greater (less) than the average

of all scores in dictionary.
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Figure S16 Pearson’s r correlation between Twitter time series for all resolutions below 1 day.
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A: LabMT Wordshift

Twitter all years combined happiness: 6.10

Twitter 2010 happiness: 6.07

Why twitter 2010 is less happy than twitter all years
combined:

B: ANEW Wordshift

Twitter all years combined happiness: 6.63
Twitter 2010 happiness: 6.64

Why twitter 2010 is happier than twitter all years
combined:

C: WK Wordshift

Twitter all years combined happiness: 6.34
.26

Twitter 2010 happines
Why twitter 2010 is
combined:

happy than twitter all years

Per word average happiness shift
D: MPQA Wordshift

Twitter all years combined happiness: 0.24

Twitter 2010 happiness: 0.18

Why twitter 2010 is less happy than twitter all years
combined:
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E: LIWC Wordshift
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Why twitter 2010 is happier than twitter all years
combined:

1
2 —
IL. boa-1 I
2. like+||
4. love+|
8. con-I_

9. happy i
B [ Y —

Word Rank

14. bout-mm—___

17. thank+| "

22. christmas+ [

Per word averag
F: Liu Wordshift

X+l T+

)

3 hate-|
5. shit:

6. bitch:|
7. live-+1

11. mean-|
12. freet1
13, awkwand-|

= ufaly 1

T8 sad-
19. bad-
120, Lll-|
=1 hurt-]
T3 wrone-l
e happiness shift

Twitter all years combined happiness: 0.18

Twitter 2010 happi
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Figure S17 Word Shifts for Twitter in 2010. The reference word usage is all of Twitter (the 10%
Gardenhose feed) from September 2008 through April 2015, with the word usage normalized by

year.
Rank | Dictionary % Tweets scored | F1 of Tweets scored | Calibrated F1 | Overall F1
1. Sent140Lex 100.0 0.89 0.88 0.89
2. labMT 100.0 0.69 0.78 0.69
3. HashtagSent 100.0 0.67 0.64 0.67
4. SentiWordNet 98.6 0.67 0.68 0.67
5. VADER 81.3 0.75 0.81 0.61
6. SentiStrength 73.9 0.83 0.81 0.61
7. SenticNet 97.3 0.61 0.64 0.59
8. Umigon 67.1 0.87 0.85 0.58
9. SOCAL 82.2 0.71 0.75 0.58
10. WDAL 99.9 0.58 0.64 0.58
11. AFINN 73.6 0.78 0.80 0.57
12. oL 66.7 0.83 0.82 0.55
13. MaxDiff 94.1 0.58 0.70 0.54
14. EmoSenticNet 96.0 0.56 0.59 0.54
15. MPQA 73.2 0.73 0.72 0.53
16. WK 96.5 0.53 0.72 0.51
17. LIWC15 61.8 0.81 0.78 0.50
18. Pattern 69.0 0.71 0.75 0.49
19. Gl 67.6 0.72 0.70 0.49
20. LIWC07 60.3 0.80 0.75 0.48
21. LIWCO1 54.3 0.83 0.75 0.45
22. Emolex 59.4 0.73 0.69 0.43
23. ANEW 64.1 0.65 0.68 0.42
24. USent 4.5 0.74 0.73 0.03
25. PANAS-X 1.7 0.88 0.01
26. Emoticons 1.4 0.72 0.77 0.01

Table S1 Ranked results of sentiment dictionary performance on individual Tweets from STS-Gold

dataset (Saif, 2013). We report the percentage of Tweets for which each dictionary contains at least
1 entry, the F1 score on those Tweets, and the overall classification F1 score. The calibrated F1 score

tunes the decision threshold between positive and negative Tweets with a random 10% training

sample.
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A: LabMT Wordshift

Twitter all years combined happiness: 6.10

Twitter 2012 happiness: 5.98

Why twitter 2012 is less happy than twitter all years
combined:

B: ANEW Wordshift

Twitter all years combined happiness: 6.63

Twitter 2012 happiness: 6.58

Why twitter 2012 is less happy than twitter all years
combined:

C: WK Wordshift

Twitter all years combined happiness: 6.34

Twitter 2012 happiness: 6.20

Why twitter 2012 is less happy than twitter all years
combined:
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Figure S18 Word Shifts for Twitter in 2012. The reference word usage is all of Twitter (the 10%
Gardenhose feed) from September 2008 through April 2015, with the word usage normalized by

year.
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Twitter 2014 happiness: 6.
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Figure S19 Word Shifts for Twitter in 2014. The reference word usage is all of Twitter (the 10%
Gardenhose feed) from September 2008 through April 2015, with the word usage normalized by

year.
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S8 Appendix: Naive Bayes results and derivation

We now provide more details on the implementation of Naive Bayes, a derivation of

the linearity structure, and more results from the classification of Movie Reviews.
First, to implement a binary Naive Bayes classifier for a collection of documents,

we denote each of the N words in the given document T as w;, thus the normalized

word frequency is f;(T) = w;/N, and finally we denote the class labels ¢, co. The

probability of a document T' belonging to class ¢; can be written as

P(c1)P(T]e1)
Pla|T) = —F——

(Cl| ) P(T)
Since we do not know P(T|c1) explicitly, we make the naive assumption that each
word appears independently, and thus write

P(cr) - [P(fi(T)|er) - P(f2(T)|er) - - P(fn(T)]ea)]
P(T)

P(ey|T) =

Since we are only interested in comparing P(c1|T") and P(c2|T), we disregard the
shared denominator and have

P(er|T) o< Pler) - [P(fo(T)]ex) - P(f2(T)]er) - - P(fn(T)]er)] -

Finally we say that document T belongs to class ¢y if P(c1|T) > P(c2|T). Given that
the probabilities of individual words are small, to avoid machine truncation error
we compute these probabilities in log space, such that the product of individual
word likelihoods becomes a sum

N
log P(c1]T) o log Plex) + " log P(fi(T)|ey).

i=1

Assigning a classification of class ¢y if P(¢1|T) > P(c2|T) is the same as saying that
the difference between the two is positive, i.e. P(¢1|T) — P(c2|T) > 0 and since the
logarithm is monotonic, log P(c1|T') — log P(c2|T) > 0. To examine how individual
words contribute to this difference, we can write

0 < log P(c1|T) — log P(c2|T)

N N
o log Pler) + Y log PUA(T)lex) —log Plez) — Y log PUL(T) )
N
o log Pler) ~ log Plez) + Y log P((T) ) ~ log P(7(T) )
P(e1) | s~ PUfi(T)]er)
108 e,y + 218 BT e,y

We can see from the above that the contribution of each word w; (or more accu-
rately, the likelihood of the frequency in document 7' being predictive of class ¢ as
P(fi(T)|c1)) is a linear constituent of the classification.
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sentiment over many random samples for naive bayes
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Figure S20 Results of the NB classifier on the Movie Reviews corpus.
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Figure S21 NYT Sections ranked by Naive Bayes in two of the five trials.

Next, we include the detailed results of the Naive Bayes classifier on the Movie

Review corpus.
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Most informative

Positive Negative
Word Value Word Value
27.27 flynt 20.21 godzilla
26.33 truman 15.95 werewolf
20.68 charles 13.83 gorilla
15.04 event 13.83 spice
14.10 shrek 13.83 memphis
13.16 cusack 13.83 sgt
13.16 bulworth 12.76 jennifer
13.16 robocop 12.76 hill
12.22 jedi 11.70 max
12.22 gangster 11.70 200

NYT Society

Positive Negative
Word Value Word Value
26.08 truman 20.40 godzilla
20.49 charles 12.88 hill
12.11 gangster 12.88 jennifer
10.25 speech 10.73 fatal
9.32 melvin 8.59 freddie
8.85 wars 8.59 =
7.45 agents 8.59 mess
6.52 dance 8.59 gene
6.52 bleak 8.59 apparent
6.52 pitt 7.51 travolta

Table S2 Trial 1 of Naive Bayes trained on a random 10% of the movie review corpus, and applied to
the New York Times Society section. We show the words which are used by the trained classifier to
classify individual reviews (in corpus), and on the New York Times (out of corpus). In addition, we
report a second trial in Table S3, since Naive Bayes is trained on a random subset of data, to show
the variation in individual words between trials (while performance is consistent).

Most informative
Positive Negative
Word Value Word Value
18.11 shrek 34.63 west
17.15 poker 24.14 webb
15.25 shark 18.89 jackal
14.29 maggie 17.84 travolta
13.34 guido 17.84 woo
13.34 outstanding 17.84 coach
13.34 political 16.79 awful
13.34 journey 16.79 brenner
13.34 bulworth 15.74 gabriel
12.39 bacon 15.74 general’s
NYT Society
Positive Negative
Word Value Word Value
17.79 poker 33.39 west
13.84 journey 17.20 coach
13.84 political 17.20 travolta
8.90 tribe 15.18 gabriel
7.91 tony 12.14 pointless
7.91 price 9.44 stupid
7.91 threat 8.09 screaming
7.12 titanic 7.59 mess
6.92 dicaprio 7.42 boring
6.92 kate 7.08 =

Table S3 Trial 2 of Naive Bayes trained on a random 10% of the movie review corpus, and applied to
the New York Times Society section. We show the words which are used by the trained classifier to
classify individual reviews (in corpus), and on the New York Times (out of corpus). This second trial
is in addition to the first trial in Table S2, since Naive Bayes is trained on a random subset of data, to
show the variation in individual words between trials (while performance is consistent).
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S9 Appendix: Movie review benchmark of additional dictionaries
Here, we present the accuracy of each dictionary applied to binary classification of

Movie Reviews.

Table S4 Ranked performance of dictionaries on the Movie Review corpus.

Rank | Title % Scored | F1 Trained | F1 Untrained
1. oL 100 0.70 0.71
2. HashtagSent 100 0.67 0.66
3. MPQA 100 0.67 0.66
4. SentiWordNet 100 0.65 0.65
5. labMT 100 0.64 0.63
6. AFINN 100 0.67 0.63
7. Umigon 100 0.65 0.62
8. Gl 100 0.65 0.61
9. SOCAL 100 0.71 0.60
10. VADER 100 0.67 0.60
11. WDAL 100 0.60 0.59
12. SentiStrength 100 0.63 0.58
13. EmoLex 100 0.65 0.56
14. LIWC15 100 0.64 0.55
15. LIWCo1 100 0.65 0.54
16. LIWCO07 100 0.64 0.53
17. Pattern 100 0.73 0.52
18. PANAS-X 33 0.51 0.51
19. Sent140Lex 100 0.68 0.47
20. SenticNet 100 0.62 0.45
21. ANEW 100 0.57 0.36
22. MaxDiff 100 0.66 0.36
23. EmoSenticNet 100 0.58 0.34
24, WK 100 0.63 0.34
25. Emoticons 0 - -
26 USent 40 - -

Rank | Title % Scored F1 Trained of Scored F1 Untrained of Scored F1 Untrained, All
1. HashtagSent 100 0.55 0.55 0.55
2. LIWC15 99 0.53 0.55 0.55
3. LIWCO07 99 0.53 0.55 0.54
4. LIWCO01 99 0.52 0.55 0.54
5. labMT 99 0.54 0.54 0.54
6. Sent140Lex 100 0.55 0.54 0.54
7. SentiWordNet 99 0.54 0.53 0.53
8. WDAL 99 0.53 0.53 0.52
9. EmoLex 95 0.54 0.55 0.52
10. MPQA 93 0.54 0.55 0.52
11. SenticNet 97 0.53 0.52 0.50
12. SOCAL 88 0.56 0.55 0.49
13. EmoSenticNet 98 0.52 0.46 0.45
14. Pattern 81 0.55 0.55 0.45
15. Gl 80 0.55 0.55 0.44
16. WK 97 0.54 0.45 0.44
17. oL 76 0.56 0.57 0.44
18. VADER 79 0.56 0.55 0.43
19. SentiStrength 77 0.54 0.54 0.41
20. MaxDiff 83 0.54 0.49 0.41
21. AFINN 70 0.56 0.56 0.39
22. ANEW 63 0.52 0.48 0.30
23. Umigon 53 0.56 0.56 0.30
24, PANAS-X 1 0.53 0.53 0.01
25. Emoticons 0 - - -
26. USent 2 - - -

Table S5 Ranked performance of dictionaries on the Movie Review corpus, broken into sentences.
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Figure S22 Word shifts for the movie review corpus, with panel letters continuing from Fig. 5. We
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again see many of the same patterns, and refer the reader to Fig. 5 for a more in depth analysis.
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S10 Appendix: Coverage removal and binarization tests of labMT
dictionary

Here, we perform a detailed analysis of the labMT dictionary to further isolate
the effects of dictionary coverage and scoring type. This analysis is motivated by
ensuring that the our results are not confounded entirely by the quality of the
word scores across dictionaries, such that the effect of coverage and scoring type
are isolated. We focus on the Movie Review corpus for this analysis and analyzing
the different between positive and negative reviews using word shift graphs. While
our attention is focused on a qualitative understanding of the differences in these
two sets of documents, we also report the accuracy of the labMT dictionary with
the aforementioned modifications using the F1 score.

Binarization

First, we gradually reduce the range of scores in the labMT dictionary from a cen-
tered -4 — 4, down to just the integer scores —1 and 1. This process is accomplished
by first using a A; = 1.00, leaving words with scores from 1-4 and 6-9, and then
applying a linear transformation to these sets of words. We subtract the center val-
ue of 5.0 from the words, leaving words with ranges from -4— -1 and 1-4, and then
linearly map these sets to scores with a reduced range. For a binarization of 25%,
we map -4- -1 to -3.25 — -1 and 1-4 to 1-3.25, reducing the range in direction from
3 t0 2.25 (a 25% reduction). For a binarization of 50%, this becomes a map of -4—
-1 to -2.5 — -1 and 14 to 1-2.5, leaving only half of the original range of values.
Finally, a binarization of 100% sets the score for all words -4— -1 to -1, and words
1-4 to 1.

In Figs. S23-526 we observe that the binarization of the labMT dictionary results
in observably different word shift graphs by changing which words contribute to the
sentiment differences as well as reducing the difference in sentiment scores between
the two corpora. Looking specifically at Fig. S26, the top 5 words in the control word
shift graph are bad, no, movie, worst, and war. In the binarized version, the top 5
are bad, no, movie, nothing, and worst. The top 5 from the continuous dictionary
move into places 1, 2, 3, 5, and 10. Examining only the positive words that increased
in frequency (not all shown in the Figure), we have “3. movie (3)”, “11. like (24)”,
“32. funny (102)”, “33. better (46)”, and “43. jokes (133)” in the control version,
with these words’ positions in the binarized version in parenthesis. In the binarized
version, these top words are “3. movie (3)”, “24. like (11)”, “30. you (84)”, “36. up
(126)”, “37. all (98)”, where the first number is the place in the overall list for the
given labMT score list, with the place for that word in the control word shift graph
in parenthesis.

In Figure S27, the F1 score is show across this gradual, linear change to a binary
dictionary. We observe that the full binarization of the labMT dictionary results in a
degradation of performance, although the differences are not statistically significant.
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Figure S23 Word shift graph resulting from the 25% binarization of the labMT dictionary.
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Figure S24 Word shift graph resulting from the 50% binarization of the labMT dictionary.




Reagan et al.

Control labMT word shift graph

Negative reviews happiness: 5.82
Positive reviews happiness: 5.99
Why positive reviews are happier than negative reviews:

Binarized 1labMT word shift graph

Negative reviews happiness: 5.60
Positive reviews happiness: 5.71
Why positive reviews are happier than negative reviews:

X+l [ | 2>+
21 _:Zz-l
|

XHC T %+t
I R 2t
I >

1. bad-]
2. no-|
3. movie+|
4. worst-|

5. war- 1 I
6. life+t
7. great+1
8. stupid-|
9. boring-|
[_110. nothing-|

[112. unfortunately-|

113, don't-|

[_J14. love+1

15. worse-|

[_116. least-]

17. poor-|

[_118. waste-|

[119. doesn’t-|

120, fails-|

21. wars-1 I

[122. best+1

[_123. family+1

24. can’t-|,

[125. terrible-|

[126. awful-|

[127. problem-|
28. wasted-1

Per word average happiness shift

11. like+|,

Word Rank

Word Rank

1. bad-]
2. no-|

4. worst-|
5. nothing-|
6. stupid-|

7. boring-|
8. war-1 [
9. dowt-]
[C__110. life-+1
11. least-|
12. unfortunately-|
113, doesn’t-|
[ J14. great+1
15. can’t-|

3. movie+|

16. like+|[]
117, worse-|
[118. waste-]
[ 119. poor-|
[120. didn’t-|
[21. fails-|
[122. problem-|
[123. awful-|
[J24. terrible-|

25. wars-1 [l
[

26. film+1
127, wasted-|
7128, dull-1

Per word average happiness shift

Figure S25 Word shift graph resulting from the 75% binarization of the labMT dictionary.
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Figure S26 Word shift graph resulting from the full binarization of the labMT dictionary.
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Figure S27 The direct binarization of the labMT dictionary results in a degradation of
performance. The binarization is accomplished by linearly reducing the range of scores in the
labMT dictionary from a centered -4 — 4 to the integer scores —1 and 1.
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Reduced coverage

Second, to test the effect of coverage alone, we systematically reduce the coverage of
the labMT dictionary and again attempt the binary classification task of identifying
Movie Review polarity. Three possible strategies to reduce the coverage are (1)
removing the most frequent words, (2) removing the least frequent words, and (3)
removing words randomly (irrespective of their frequency of usage).

In Figs. S28-S46, we show the resulting word shift graphs with the control (all
words included) alongside word shift graphs using the labMT dictionary with the
least frequent (LF) and most frequent (MF) words removed. Each word shift graph
with reduced coverage shows the number of words removed in parenthesis in the
title, e.g., in Fig. S28 we see the titles “LF Reduced coverage (511)” and “MF
Reduced coverage (511)” which indicate that 511 words were removed in the indi-
cated fashion. We first observe that the difference in sentiment scores between the
positive and negative movie reviews is decreased from 0.17 to 0.02-0.05 and 0.09—
0.15 for the LF and MF strategies, respectively, while noting that these differences
do not result in predictive accuracy (i.e., classification accuracy is not statistically
significant worsened). Examining the words in Fig. S28 more closely, where only
5% of the words have been removed, we already observe departures in individual
word contributions. Of the top 5 words in the control graph (“bad”, “no”, “movie”,
“worst”, and “war”), we see only 3 of these in the top 5 for LF (all in the top 8) and
only 1 in the top for MF (with 2 of the 5 showing on the graph at all). In the LF
graph we lose words like “don’t”, “least”, “doesn’t”, “terrible”, “awful”, “problem”,

wn
1

and instead see the words “the”, “of”, , “is”, “have” contribute more strongly.
In the MF graph we lose common words like “best”, “family”, “love”, “life”, “like”
and instead see the less common words “excellent”, “perfect”, “funny”, “wonder-
ful”, “kill”, “jokes”, “beautiful”, “dull”, “performance”, “annoying”, and “lame”.
As one might expect, these trends of common/uncommon words varying across the
word shifts graphs continue for increasingly reduced coverage.

With approximately half of the words from the labMT dictionary removed, in
Fig. S37 we observe high overlap between the words in the control and LF, and
only a single word in common between the control and MF word shift graphs. In
addition to this, the sentiment score difference between the positive and negative
reviews is 0.17 for the control, 0.04 for LF, and 0.14 for MF. In Fig. , only 1,024
(of 10,222) words remain in the LF and MF reduced coverage dictionaries, and
again we see similar trends. Higher overlap exists between the LF and control,
with only two words (“don’t”, “can’t”) in common between MF and control. While
coverage remains above 50% for the LF strategy, the word shift graph shows more

words that are weighting the classification incorrectly: “the”, “i”, “war”, “like”, etc.

The MF word shift graph shows interesting words but also has many words that
detracting from the classification: “I'm”, “spice”, “they’re”, “drunken”, etc. We can
conclude again, with these observations, that sentiment classification and sentiment
understanding using word shifts graphs relies on broad coverage of the words used
in the text being analyzed.

In Figures S47 and S48, we show the resulting F1 score of classification perfor-
mance for each of these three strategies and the total coverage from each removal

strategy. We observe that while certain strategies are more effective at retaining

Page S28 of S36



Reagan et al.

performance, lower coverage scores are all lower despite substantial variation, and
the overall pattern for each strategy is a decrease in performance for decreasing
coverage. In both cases these results are consistent with those seen across dictionar-
ies: integer scores and low coverage strongly reduce the performance of the 2-class
movie review classification task, as measured by the Fl-score. We note that this

trend is not statistically significant, as can be observed with the standard deviation
error bars.
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Figure S28 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S29 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S30 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S31 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S32 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S33 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S34 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S35 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S36 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S37 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S38 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S39 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S40 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S41 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S42 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S43 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S44 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Control labMT word shift graph
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Figure S45 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S46 Word shift graphs resulting from the remove of the most frequent (MF) and least
frequent (LF) words in the labMT dictionary.
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Figure S47

Fraction words removed

The resulting F1 score of classification performance for each of three coverage

removal strategies. These strategies, labeled in the above, are: (1) removing the most frequent
words, (2) removing the least frequent words, and (3) removing words randomly (irrespective of
their frequency of usage). Error bars shown reflect the standard deviation of the F1 metric over

100 random samples.
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Figure S48 The resulting coverage for each of three coverage removal strategies. Again, these
strategies, labeled in the above, are: (1) removing the most frequent words, (2) removing the least
frequent words, and (3) removing words randomly (irrespective of their frequency of usage).
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