(a) Transitivity

(b) Links at multiple generations


Additional file 3: Possible types of triangles present in the network of families. In the above diagram, $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and $\mathrm{F}_{3}$ denote families, and $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and F denote individuals. Two individuals are joined by a thin dashed line when they belong to the same family. A thick dashed line between a pair of individuals belonging to different families indicate male-female partners in parental unions. The thick solid lines indicate connections between families as a result of the parental unions. In cases of both (a) and (b), $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and $\mathrm{F}_{3}$ form closed triangles, although nature of the triangles are different. (a) Transitivity: A possible example is the following. The individuals A and B are brothers. A marries C, while B marries E. C and D are sisters, while E (female) and F (male) are cousins. F and D get married. The triangle formed by the families $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right)$ is transitive because each link in the network would uniquely correspond to a marital relationship (and also result in one or more offspring, for consideration in our study). (b) Links at multiple generations: This kind of triangles occurs when an offspring becomes a parent. For example, A (male) and B (female) get married and C is born. By definition, C belongs to both the $\mathrm{F}_{1}$ (paternal family) and $\mathrm{F}_{2}$ (maternal family). C gets married to D from family $\mathrm{F}_{3}$. In this case, both links $\left(\mathrm{F}_{1}, \mathrm{~F}_{3}\right)$ and $\left(\mathrm{F}_{2}, \mathrm{~F}_{3}\right)$ result from the link between C and D .

