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1 Descriptive Statistics
In this section, we provide further exploratory analysis of the dataset.

First, Figure 1 provides the matrix of Spearman’s rank correlation coefficients
between all factors and the different types of crime incidents within a census tract. In
terms of correlations, as expected, we notice some clusters of co-related features: the
number of venues by type, the number of checkins by type, the number of popular
venues by time, the average numbers of metro exits/entries, the average numbers
of taxi drop-offs/pickups. Notably, these features are also positively and relatively
strongly correlated with the crime indicators. We also notice negative correlations,
like the demographic diversity indexes and some of the venues fractions and offering
advantages.

Second, Figure 2 presents scatter plots and OLS regressions between crime counts
and some exemplary metrics of the resident and ambient population, all in loga-
rithmic scale. Amid some large leverage points, we notice weak positive linear re-
lationships between the crime indicators and the considered attributes, of up to
adj.R? = 44% for larcenies as a function of shops. These initial results support our
assumption that attributes of the ambient population of a neighborhood are related
to the crime levels.

2 Model Assessment
In this section, we investigate the optimal range for hyper-parameter tuning of the
models by means of validation curves, and the data requirements of the models by

means of learning curves.

2.1 Validation Curves

Figure 3 presents validation curves, i.e. training and cross-validated MSE of the
ensemble models as a function of the hyper-parameters. If the complexity of the
model is too low, we will underfit the data, and (both training and cross-validated)
MSE will be very large because the model is too simple/biased to describe the
underlying phenomena. If the complexity of the model is too high, we will overfit the
training data, and the cross-validated MSE will be very large because the supposed
patterns that the method found in the training data simply do not exist in the test
data. Hence, to find the best combination of number trees and maximum depth
of the trees (and in the case of GBR also learning rate), we employ a grid-search
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algorithm which exhaustively searches for the best combination of parameters and
selects that combination which delivers best cross-validated MSE, and use the curves
above to inform our values ranges and avoid underfitting and overfitting. In case of
RF and ET, we use values ranging from 50 to 400 for number of trees, and values
ranging from one third, to one half, to the full set of features for the depth; in case
of GBR, we use values ranging from 100 to 400 for number of trees, and values
ranging from 1 to 4 for the number of boosting iterations/depth.

2.2 Learning Curves

Figure 4 presents learning curves, i.e. training and cross-validated MSE of the
models as a function of training set size. From these curves we are able to obtain a
deeper insight into the data requirements of the different algorithms. Most notably,
we conclude that cross-validation error keeps decreasing with the number of samples
considered for model training, hence we should use all available data in the final
model. Also, by comparing the different models, we notice that the linear models
exhibits the worse MSE and also high variability, while the GBR. delivers the best
MSE.

3 Additional Model Specifications
In this section, we provide results of additional model specifications: census + FS,
census + Subway, census + Taxi.

We also present here the geographical error of the additional model specifications.
As presented in Table 5, the census + FS model achieves 1847 samples with a low
absolute error, while census + taxi model achieves 1758 samples, while the census
+ subway model achieves only 1677 samples.

4 Feature Importances across Models
Figure 6 plots the results on the complete set of features for the top performing
crime categories: total incidents, grand larcenies and assaults. The size of the bar
represents the features’ importance in the respective ensemble. The importance of a
feature is computed as the impurity decrease this feature brings, averages across all
trees in the ensemble. Impurity is the measure based on which the (locally) optimal
condition is chosen at each node in a tree, and for regression trees it is variance.
Comparing the different tree-based ensemble methods, we observe that the Ran-
dom Forest models tend to assign very high predictive power for a few chosen
features, while the Gradient Boosting models tend to distribute feature importance
more evenly. This is due to the difference in the ranking of features within the two
models: the impurity based ranking of the random forest is typically aggressive in
the sense that there is a sharp drop-off of scores after the first few top ones, while
for GBR, all features are used in the boosting process (iterative fitting to minimize
the residuals). This fact, paired with its top performance on the most relevant crime
categories, makes GBR a better model to do feature interpretation on.
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Census + FS Census + Subway Census + Taxi
MSE R MSE R MSE R

2015
Total incidents
Random Forest 0.46+0.05 0.58+0.07 0.52+0.09 0.45+£0.14 0.494+0.07 0.52+0.08
Extra-Tree 0.44+0.03 0.61+0.07 0.51+0.07 0.48+0.09 0.50+0.09 0.51+0.12
Gradient Boosting  0.444+0.04 0.62+0.06 0.51+0.07 0.49+0.09 0.51+0.12 0.48+0.19
Grand larcenies
Random Forest 0.52+0.04 0.53+0.09 0.64+0.14 0.32+£0.10 0.67+0.04 0.42+0.10

Extra-Tree 0.51+0.04 0.54+0.09 0.63+0.12 0.33+0.08 0.58+0.12 0.43+0.06
Gradient Boosting  0.514+0.04 0.54+0.10 0.63+0.12 0.33+0.08 0.61+0.14 0.38+0.10
Robberies
Random Forest 0.64+0.05 0.46+0.10 0.65+0.05 0.44+0.10 0.59+0.12 0.42+0.06
Extra-Tree 0.64+0.04 0.47+0.08 0.65+0.04 0.45+0.08 0.68+0.06 0.39+0.14
Gradient Boosting  0.624:0.04 0.49+0.07 0.65+0.05 0.45+0.10 0.69+0.11 0.35+0.24
Burglaries
Random Forest 0.56+0.03 0.30+0.06 0.59+0.03 0.23+0.04 0.60+0.03 0.20+0.09
Extra-Tree 0.55+0.03  0.32+0.04 0.584+0.03 0.2540.05 0.59+0.04 0.22+0.06
Gradient Boosting  0.5540.03  0.31+0.04 0.56+0.03 0.29+0.04 0.59+0.04 0.21+0.05
Assaults
Random Forest 0.61+0.03 0.56+0.07 0.65+0.03 0.51+0.06 0.65+0.02 0.49+0.06
Extra-Tree 0.604+0.04 0.57+0.06 0.64+0.02 0.52+0.04 0.654+0.02 0.50+0.04

Gradient Boosting  0.61+£0.03  0.57+0.05 0.63+0.02 0.53+0.04 0.64+0.02 0.52+0.04
Vehicle larcenies
Random Forest 0.62+0.07 0.09+0.10 0.614+0.08 0.11+0.12 0.58+0.03 0.19+0.04

Extra-Tree 0.62+0.05 0.09+0.04 0.614+0.06 0.11+0.07 0.614+0.05 0.13+0.04
Gradient Boosting  0.6340.07 0.07+0.08 0.62+£0.08 0.09+0.12 0.58+0.04 0.19+0.04
2014

Total incidents
Random Forest 0.46+0.06 0.56+0.09 0.53+£0.09 0.42+0.14 0.51+0.09 0.45%0.15
Extra-Tree 0.45+0.05 0.58+0.09 0.53+0.06 0.42+0.09 0.53+0.11 0.42+0.20
Gradient Boosting  0.45+0.05 0.57+0.07 0.5340.07 0.4240.10 0.55+0.15 0.36+0.31

Grand larcenies
Random Forest 0.51+0.06 0.54+0.09 0.64+0.12 0.284+0.12 0.62+0.17 0.34+0.15

Extra-Tree 0.51+0.06 0.54+0.08 0.63+0.11 0.31+0.09 0.63+0.17 0.32+0.16
Gradient Boosting  0.514+0.06 0.54+0.07 0.64+0.11 0.284+0.10 0.64+0.21 0.30+0.25
Robberies
Random Forest 0.66+0.07 0.43+0.13 0.66+0.04 0.43+0.09 0.68+0.04 0.39+0.11
Extra-Tree 0.64+0.06 0.45+0.12 0.65+0.04 0.44+0.10 0.73+0.14 0.26+0.37
Gradient Boosting  0.664+0.06 0.43+0.11 0.65+0.05 0.44+0.10 0.70+0.08 0.33+0.21
Burglaries
Random Forest 0.59+0.03 0.30+0.06 0.62+0.03 0.23+0.03 0.62+0.04 0.23+0.04
Extra-Tree 0.58+0.03 0.32+0.06 0.624+0.03 0.24+0.04 0.62+0.05 0.23+0.08
Gradient Boosting  0.5940.04 0.30+0.04 0.60+£0.03 0.29+0.01 0.62+0.04 0.23+0.03
Assaults
Random Forest 0.64+0.05 0.52+0.09 0.67+0.04 0.49+0.08 0.68+0.05 0.47+0.09
Extra-Tree 0.62+0.04 0.55+0.08 0.654+0.03 0.52+0.07 0.68+0.08 0.46+0.13

Gradient Boosting  0.65+0.04 0.52+0.06 0.65+0.04 0.51+0.07 0.68+0.06 0.46+0.10
Vehicle larcenies
Random Forest 0.62+0.05 0.08+0.10 0.61+0.04 0.11+0.08 0.59+0.02 0.19+0.05
Extra-Tree 0.62+0.03 0.08+0.06 0.624+0.03 0.09+0.03 0.63+0.05 0.06+0.13
Gradient Boosting  0.63+0.04 0.07+0.07 0.62+0.05 0.08+0.09 0.61+0.04 0.12+0.07

Table 1: Geographical out-of-sample results of the regressors using different subsets

of the features: for each year, repeatedly trained on 80% of the census tracts, and
tested on 20% of the census tracts.

Census + FS  Census + Subway  Census + Taxi
MSE R? MSE R MSE R

Total incidents
Random Forest 0.07 0.89 0.09 0.85 0.09 0.85
Extra-Tree 0.07 0.89 0.07 0.88 0.07 0.88
Gradient Boosting 0.08 0.86 0.12 0.80 0.15 0.75

Grand larcenies
Random Forest 013 0.82 0.19 0.74 0.15 0.79

Extra-Tree 015 0.79 022 0.70 0.15 0.80
Gradient Boosting 0.18 0.75  0.23 0.68 0.22 0.69
Robberies
Random Forest 023 075 0.26 0.72 0.27 0.70
Extra-Tree 028 0.70 0.27 0.71 0.36 0.61
Gradient Boosting 027 0.71  0.34 0.63 0.38 0.59
Burglaries
Random Forest 025 048 025 0.48 0.24 0.49
Extra-Tree 032 032 025 0.47 0.26 0.45
Gradient Boosting 025 0.48 0.28 0.41 0.29 0.40
Assaults
Random Forest 023 077 024 0.75 0.24 0.76
Extra-Tree 028 072 025 0.75 0.26 0.74

Gradient Boosting  0.27 0.73  0.32 0.67 0.36 0.63
Vehicle larcenies
Random Forest 030 032 029 0.35 0.28 0.37
Extra-Tree 040 012 0.29 0.35 0.32 0.28
Gradient Boosting 0.29 0.34 0.30 0.32 0.31 0.30

Table 2: Temporal out-of-sample results of the regressors using different subsets of
the features: trained on 2014 and tested on 2015.
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Figure 1: Correlation matrix.
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Figure 2: Scatter plots and univariate regressions.
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Figure 3: Validation curves of the models (full specification) for total incidents 2015.
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Figure 4: Learning curves of the models (full specification) for total incidents 2015.
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Figure 6: Variable importance plots across all three models (RF = Random Forest

ET = Extra-Trees, GB = Gradient Boosting). From left to right: 2015 total inci
dents, 2015 grand larcenies,

and 2015 assaults.
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