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S1 Distribution of the symbols

The different nature of both, Position and Price time series, is manifested in the fraction of the symbols (see
Figure 2 of the main paper) that appear in each type of series (see Figure S1). Actually, the two kinds of
distributions exhibit an opposite behavior. In investors position series there is a predominance of symbol
0, which means no activity, with the 96% and 92% of occurrences for m = 2 and m = 3 respectively when
all series are pooled together. The rest of the symbols, 1 and 2, in m = 2 group have almost the same 2%
probability each. In the case of m = 3 the group of symbols with more probability apart from symbol 0 is
the one made by symbols 1,2,4 and 10 which corresponds to making an operation followed by no-activity,
or the other way around no-activity followed by making an operation. Finally the rest of symbols in m = 3
are characterized by activity in three consecutive days. Between those, symbols 5 and 12 indicate a trend
and at same time are the most probable events among the full-activity subset. Regarding probability of
the symbols in price series, the symbol 0 indicating no changes is the least probable either in m = 2 and
m = 3. Additionally, there is no significant difference between upwards or downwards symbols. However,
it is noticeable that in m = 3 symbols which indicate a trend, either upwards (symbol 5) or downwards
(symbol 12), are twice more probable than the rest with non-identical values.
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Figure S1: Empirical Probability for Symbols. Probability to find each symbol (see Figure 2 in the
main paper) for m = 2 (top) and m = 3 (bottom) after symbolizing and aggregating the series of position
(left) and price (right) of all assets.
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S2 Shift of null values of Transfer of Entropy produced by different
symbol proportion

In order to fairly compare different values of Transfer of Entropy, that is how much , it is important to take
into account that different proportion of symbols, specially in short time series, might shift the distribution
for the null values. Thus, In Figure S3 we show the results of the simulations where artificial series are
generated with different symbol distribution. In the top of the Figure S3 we observe how, in spite of the
distributions are different from one case to the other, each T (X̂, Ŷ ) value coming from a different shuffling
process is distributed around zeros since the fraction of the symbols is roughly the same. Conversely, when
the distribution of symbols differs from one series to the other, T (X̂, Ŷ ) values are peaked around a value
not placed at zero (bottom part of Figure S3). This is the most general case we find in our empirical data,
so we will take as a null value the median of the distribution around which all shuffled realizations oscillate.
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Figure S2: Transfer Entropy Bias Depending on Underlying Symbol Distributions for m = 2.
Transfer Entropy distributions calculated after generating two artificial series of symbols, A and B, with flat
distributions (top left), Gaussian distribution with same mean (top right) and flat-Gaussian distributions
(bottom left). Length of the A and B vectors is 5, 000 and the distribution corresponds to a n = 10, 000
calculations of TE value from A to B, shuffling the vectors each time. Finally, an example case for an
individual investor is showed using the same procedure (bottom right).
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Figure S3: Transfer Entropy Bias Depending on Underlying Symbol Distributions for m = 3.
Transfer Entropy distributions calculated after generating two artificial series of symbols, A and B, with flat
distributions (top left), Gaussian distribution with same mean (top right) and flat-Gaussian distributions
(bottom left). Length of the A and B vectors is 5, 000 and the distribution corresponds to a n = 10, 000
calculations of TE value from A to B, shuffling the vectors each time. Finally, an example case for an
individual investor is showed using the same procedure (bottom right).

We therefore conclude that we cannot assume the same Gaussian distribution for the Transfer of Entropy
for each pair of investors. Instead, we need to make multiple simulations shuffling the values and then extract
the values for the mean and the variance in order to define the shape of the null distribution. Then, from
that null distribution we can determine whether the values are significant or not applying the techniques we
have shown in the methods section.
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S3 Synchronization and Anticipation adjacency matrices

Figure S4: Synchronization and Anticipation network heatmaps for GAS. Heatmaps displaying Iij
(left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair of investors
i and j in x-axis and y-axis respectively. In the top row we show networks generated using FDR method to
control false positive, whereas in the bottom row the networks have been generated using Bonferroni.
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Figure S5: Synchronization and Anticipation network heatmaps for REP. Heatmaps displaying Iij
(left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair of investors
i and j in x-axis and y-axis respectively. In the top row we show networks generated using FDR method to
control false positive, whereas in the bottom row the networks have been generated using Bonferroni.
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Figure S6: Synchronization and Anticipation network heatmaps for ZEL. Heatmaps displaying Iij
(left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair of investors
i and j in x-axis and y-axis respectively. In the top row we show networks generated using FDR method to
control false positive, whereas in the bottom row the networks have been generated using Bonferroni.
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Figure S7: Synchronization and Anticipation network heatmaps for EZE. Heatmaps displaying Iij
(left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair of investors
i and j in x-axis and y-axis respectively. In the top row we show networks generated using FDR method to
control false positive, whereas in the bottom row the networks have been generated using Bonferroni.
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Figure S8: Synchronization and Anticipation network heatmaps for ELE. Heatmaps displaying Iij
(left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair of investors
i and j in x-axis and y-axis respectively. In the top row we show networks generated using FDR method to
control false positive, whereas in the bottom row the networks have been generated using Bonferroni.
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Figure S9: Synchronization and Anticipation network heatmaps for BBVA. Heatmaps displaying
Iij (left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair
of investors i and j in x-axis and y-axis respectively. In the top row we show networks generated using
FDR method to control false positive, whereas in the bottom row the networks have been generated using
Bonferroni.
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Figure S10: Synchronization and Anticipation network heatmaps for SAN. Heatmaps displaying Iij
(left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair of investors
i and j in x-axis and y-axis respectively. In the top row we show networks generated using FDR method to
control false positive, whereas in the bottom row the networks have been generated using Bonferroni.
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Figure S11: Synchronization and Anticipation network heatmaps for TEF. Heatmaps displaying Iij
(left column) and Tij (right column) color coded in the bar on the right of each plot, for each pair of investors
i and j in x-axis and y-axis respectively. In the top row we show networks generated using FDR method to
control false positive, whereas in the bottom row the networks have been generated using Bonferroni.
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S4 Network topological properties

Table S1: Synchronization network features using Bonferroni. Number of nodes, edges and average degree
is shown in the first three columns for all networks. Fourth column refers to a Null Hypothesis testing based
on Kolmogorov-Smirnov (KS) statistic for rejecting the hypothesis that underlying distribution for node
out-degrees is a Poisson distribution, only p-value is shown. Fifth and sixth column show the Clustering
Coefficient and Degree Assortativity of the undirected graph. The networks in this table have been built
using ”Bonferroni” as described in methods section.

Asset Number of Number of Average Poisson KS test Clustering Assortativity
Nodes Edges Degree p-value Coefficient Coefficient

TEF 342 2401 14.04 < 10−5 0.3 0.1
SAN 166 585 7.05 < 10−5 0.31 -0.06
BBVA 69 138 4.00 0.00002 0.26 0.0
ELE 54 101 3.74 0.00497 0.33 0.18
EZE 45 53 2.36 0.00015 0.23 -0.16
ZEL 38 49 2.58 0.00578 0.22 0.34
REP 42 59 2.81 0.01996 0.29 0.29
GAS 15 19 2.53 0.15497 0.19 0.02

Table S2: Anticipation network features using Bonferroni. Number of nodes, edges and average degree are
shown in the first three columns for all networks. Fourth column refers to a Null Hypothesis testing based
on Kolmogorov-Smirnov (KS) statistic for rejecting the hypothesis that underlying distribution for node
out-degrees is a Poisson distribution, only p-value is shown. Fifth column shows the Degree Assortativity of
the directed graph. The networks in this table have been built using ”Bonferroni” as described in methods
section.

Asset Number of Number of Average Poisson KS test Assortativity
Nodes Edges Out-Degree p-value Coefficient

TEF 116 108 0.93 < 10−5 0.04
SAN 16 9 0.56 0.00002 0.00
BBVA 11 6 0.55 0.00049 0.00
ELE 9 6 0.67 0.00822 0.00
EZE 7 4 0.57 0.01237 0.00
ZEL 5 3 0.60 0.06064 0.00
REP 5 3 0.60 0.06064 0.00
GAS 0 0 0.00 — 0.00
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S5 Individual reaction to price effect on Synchronization network
using Bonferroni
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Figure S12: Synchronization with price as driver of synchronization between investors. Axis x and y represent
deciles so that generate a 10x10 matrix. Each cell coordinates are given by the deciles of Iip and Ijp
respectively, and the value showing refers to the frequency of events with statistically significant Mutual
Information Iij , i.e. all not null edges of the Synchronization network.
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S6 Individual reaction to price effect on Anticipation network us-
ing Bonferroni

Table S3: Influence of individual reaction to price over the Anticipation network. The table is divided in
four groups across the 8 different markets plus the aggregation of all them. For all significant links from i
to j (Tij > 0) for each network (market), we computed the probability of i being more synchronized with
price than j (first group), i being less synchronized than j (second column), i having a higher value for the
STE with respect to price than j (third group) and i having a higher value for the STE with respect to price
than j (fourth group). Bonferroni approach described in ”Methods” section of the main paper is used here
to discriminate the significant links. Numbers between brackets account for the frequency. Asterisks refer
to different confidence interval levels, * for 90%, ** for 95%, and *** for 99%.

Asset p (Iip > Ijp|Tij > 0) p (Iip < Ijp|Tij > 0) p (Tip > Tjp|Tij > 0) p (Tip < Tjp|Tij > 0)
TEF 0.57 (62) 0.43 (46) 0.49 (53) 0.51 (54)
SAN 0.67 (6) 0.33 (3) 0.33 (3) 0.67 (6)
BBVA 0.50 (3) 0.50 (3) 0.50 (3) 0.50 (3)
ELE 1.00 (6) 0.00 (0) 0.50 (3) 0.50 (3)
EZE 0.75 (3) 0.25 (1) 0.75 (3) 0.25 (1)
ZEL 1.00 (3) 0.00 (0) 0.00 (0) 1.00 (3)
REP 0.67 (2) 0.33 (1) 0.67 (2) 0.33 (1)
GAS 0.00 (0) 1.00 (1) 1.00 (1) 0.00 (0)
ALL 0.61*** (85) 0.39*** (54) 0.49 (67) 0.51 (71)
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