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Kendall’s tau correlation analysis

In Table S1, we report the results of a Kendall’s tau correlation analysis comparing

visitor numbers and Google search volume for all museums and galleries in our

analysis.

Table S1 Correlation between visitors data in the period from January 2010 until December 2018
and Google search data.

Museum Kendall’s τ z p

British Museum 0.294 4.311 < 0.01
Horniman Museum 0.492 7.424 < 0.01
Imperial War Museums 0.275 4.127 < 0.01
National Coal Mining Museum For England 0.615 9.275 < 0.01
National Gallery 0.168 2.474 < 0.05
National Museums Liverpool 0.448 6.797 < 0.01
National Portrait Gallery 0.540 8.130 < 0.01
Natural History Museums 0.258 3.916 < 0.01
Royal Armouries 0.098 1.474 > 0.10
Science Museum Group 0.231 3.482 < 0.01
Tate Britain 0.548 8.057 < 0.01
Tate Modern 0.429 6.442 < 0.01
Tate Liverpool 0.242 3.621 < 0.01
Tate St Ives 0.585 8.879 < 0.01
The Wallace Collection 0.001 0.011 > 0.90
Victoria and Albert Museums 0.238 3.578 < 0.01

Neural network autoregressive model

Neural network autoregressive models are forecasting methods based on neural net-

works [1, 2]. Figure S1 depicts an example of the kind of neural network used in

our analysis. We consider networks with an input layer, where the time series data

enters the model, a hidden layer, and an output node from which the model esti-

mate is retrieved. The networks we consider receive as input the lagged values of

the time series data. Each lagged value enters the network via a node in the input

layer, so there is one input node per lagged value. The optimal number of lagged

values to use, and therefore of input nodes in the network, is determined using

AIC [3]. Seasonal components can also be included as input nodes. In the example

figure, the network receives two lagged values, a seasonal value from the previous

year, and additional external data xext,t which in our analysis is data from Google.

We consider networks with one hidden layer and with the number of nodes in the

hidden layer equal to half the number of input nodes plus one, as detailed in [4, 5].

The input zj to each neuron j in the hidden layer is a weighted combination of the

mailto:federico.botta@wbs.ac.uk


Botta et al. Page 2 of 9

input layers:

zj = bj + wt−1,jYt−1 + wt−2,jYt−2 + wt−12,jYt−12 + wreg,jxext,t

The parameters bj and wi,j are learned from the data. To avoid the weights becom-

ing too large, it is customary to include a decay parameter [3]. We set this decay

parameter to be equal to 0.5. Each node in the hidden layer then transforms its

input in a nonlinear fashion:

s(z) =
1

1 + e−z

The weights are initialised randomly. We therefore train each network 100 times

and then average the results.

yt-1 xext, t
yt-2 yt-12

yt

NNAR structure

Figure S1 Forecasting with neural network autoregressive models (NNAR) | Neural networks
can be used for forecasting time series data. Lagged and seasonal values of the time series are
normally used as input nodes to the neural network. We automatically determine the optimal
number of lags using AIC [3]. Information coming from additional external time series data can
easily be incorporated in the network as an additional node in the input layer. The model used in
our analysis then has one hidden layer, with the number of nodes in the hidden layer equal to half
of the number of inputs plus one [4, 5]. We depict here the hypothetical case of a monthly time
series with a seasonal component of one year. The network receives two lagged values from the
two previous time steps, one value from the previous season (twelve months ago), and an external
regressor bringing in additional information. The output layer of the network corresponds to the
forecast.

Diebold-Mariano test

In our analysis of forecast accuracy, we perform a Diebold-Mariano (DM) test to

compare four different models: ARIMA, NNAR, ARIMA with Google Trends, and

NNAR with Google Trends. Since the test can only be performed between two mod-

els at a time, we have to perform six pairwise Diebold-Mariano tests to compare

all models to each other. For this reason, we correct the resulting p-values of the

tests to account for multiple comparisons, using the false discovery rate [6] correc-

tion method. We then perform this analysis for 43 different values of the training

window used to calibrate the model. This results in 258 test statistics. For the
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comparison between models with and without data from Google Trends, we find

that all Diebold-Mariano statistics are larger than 2.592 (all p < 0.05)). We report

here three examples of the full output of the Diebold-Mariano test for three specific

training windows:

• 30 months, which is the shortest training window we used in our analysis

• 72 months, which is the longest training window we used in our analysis

• 54 months, which is the median of the range of training windows considered

in our analysis

Tables S2, S3 and S4 report the values of the DM statistic, and the corresponding

levels of significance. The p-values in the tables have already been adjusted using

false discovery rate correction [6]. For each of these training window lengths, we

find that the models which include data from Google Trends deliver statistically

significant improvements over their baseline counterpart.

Table S2 Diebold-Mariano test statistics to compare models trained on 30 months of data. Bold
entries indicate the key comparisons between a model which includes Google Trends data and the
corresponding baseline model that is based on historical visitor numbers alone. Positive values of the
DM statistic reflect lower error rates for the column model in comparison to the row model.

Baseline Google Trends

ARIMA NNAR ARIMA NNAR

ARIMA - -2.1 (p > 0.05) 3.28 (p < 0.01) 0.82 (p > 0.40)

NNAR - 4.02 (p < 0.001) 8.97 (p < 0.0001)B
a

se
li
n

e

ARIMA - -1.42 (p > 0.1)

NNAR -

G
o
o
g
le

T
re
n
d
s

Table S3 Diebold-Mariano test statistics to compare models trained on 54 months of data. Bold
entries indicate the key comparisons between a model which includes Google Trends data and the
corresponding baseline model that is based on historical visitor numbers alone. Positive values of the
DM statistic reflect lower error rates for the column model in comparison to the row model.

Baseline Google Trends

ARIMA NNAR ARIMA NNAR

ARIMA - -4.65 (p < 0.001) 5.68 (p < 0.001) -0.48 (p > 0.5)

NNAR - 7.12 (p < 0.001) 7.78 (p < 0.001)B
a

se
li
n

e

ARIMA - -4.11 (p < 0.001)

NNAR -

G
o
o
g
le

T
re
n
d
s
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Table S4 Diebold-Mariano test statistics to compare models trained on 72 months of data. Bold
entries indicate the key comparisons between a model which includes Google Trends data and the
corresponding baseline model that is based on historical visitor numbers alone. Positive values of the
DM statistic reflect lower error rates for the column model in comparison to the row model.

Baseline Google Trends

ARIMA NNAR ARIMA NNAR

ARIMA - -5.07 (p < 0.001) 4.26 (p < 0.001) -1.13 (p > 0.2)

NNAR - 6.03 (p < 0.001) 6.17 (p < 0.001)B
a

se
li
n

e

ARIMA - -3.98 (p < 0.001)

NNAR -

G
o
o
g
le

T
re
n
d
s

Figure S2 Investigating differences in performance when using visitor numbers for the main
Science Museum site in South Kensington and for the whole Science Museum group.

Comparison between visitor number estimates for the Science Museum group and for

the Science Museum site in South Kensington

In the main text, we present the results of our analysis for the Science Museum

group, when we consider the number of visitors to museums across the whole group.

However, we note that this resulted in one of the lowest correlations between the

number of visitors and search query data. We hypothesise that this is because Sci-

ence Museum topic data from Google Trends relates mainly to the Science Museum
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in South Kensington, London. Here, we carry out the same analysis using only the

number of visitors to the South Kensington site of the Science Museum. We find a

stronger correlation when training on and estimating visitor numbers for the Sci-

ence Museum South Kensington site (Kendall’s τ = 0.274, N = 108, z = 4.095,

p < 0.001), in comparison to training on and estimating visitor numbers for all

museums in the Science Museum group (Kendall’s τ = 0.231, N = 108, z = 3.482,

p < 0.001; Fig. S2). However, we also note that the overall value of the MASE is

comparable across the two analyses (Fig. S2).

Generalised linear model of errors

In our subsequent analysis of the forecast accuracy, we fit a generalised linear model

using a gamma distribution, a logarithmic link function and robust standard errors,

with the model, museum, month and training window as predictors. Each predictor

enters the model as a categorical variable. For the model variable, the four cate-

gories correspond to the different models. We use the baseline ARIMA model as

our reference level. With 4 different models, 16 museums, 96 months of data and 43

training window lengths, our regression model is fit on 264 192 observations in total.

As described in the main text, we are particularly interested in the coefficients

corresponding to the model variable, since these indicate whether models using

Google Trends data have lower errors than the baseline ARIMA model. Table S5

reports the results of the regression fit for the variables of interest. The fitted co-

efficient of the model dummy variable corresponding to the ARIMA with Google

Trends model is statistically significant and negative (−0.132, p < 0.001). Similarly,

the coefficient for the NNAR with Google Trends model is also statistically signifi-

cant and negative (−0.078, p < 0.001), whereas the coefficient for the NNAR model

with no Google Trends data is statistically significant and positive (0.078, p < 0.01).

Both these results suggest that ARIMA and NNAR models which include Google

Trends data produce smaller errors than their baseline counterparts.

Tables S6 – S13 report analogous results for unrelated Google Trends control topics.

We find that the fitted coefficient of the model dummy variable for the ARIMA with

Google Trends is positive for all control topics, and statistically significantly so in

the vast majority of cases. For the NNAR with Google Trends model, the coefficient

is statistically significantly larger than the coefficient for the NNAR baseline for

two of the control topics (both differences > 0.01, both ps < 0.025), with no sig-

nificant difference for the other six control topics (all absolute differences < 0.0007,

all ps > 0.24). This suggests that adding Google Trends data for topics of limited

relevance does not improve our estimates, and may in fact worsen the accuracy.

Table S5 Results of the linear regression analysis of the errors of the different models.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends -0.132 0.005 -25.279 <0.001 ∗∗∗

NNAR with Google Trends -0.078 0.005 -14.982 <0.001 ∗∗∗

NNAR 0.078 0.005 15.191 <0.001 ∗∗∗
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Table S6 Results of the linear regression analysis of the errors of the different models when using
England as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.020 0.005 3.890 <0.001 ∗∗∗

NNAR with Google Trends 0.094 0.005 18.315 <0.001 ∗∗∗

NNAR 0.081 0.005 15.649 <0.001 ∗∗∗

Table S7 Results of the linear regression analysis of the errors of the different models when using
Travel as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.016 0.005 3.140 <0.01 ∗∗

NNAR with Google Trends 0.076 0.005 14.697 <0.001 ∗∗∗

NNAR 0.082 0.005 15.955 <0.001 ∗∗∗

Table S8 Results of the linear regression analysis of the errors of the different models when using
Buckingham Palace as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.036 0.005 7.125 <0.001 ∗∗∗

NNAR with Google Trends 0.095 0.005 18.641 <0.001 ∗∗∗

NNAR 0.083 0.005 16.098 <0.001 ∗∗∗

Table S9 Results of the linear regression analysis of the errors of the different models when using
Hyde Park as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.007 0.005 1.350 >0.10
NNAR with Google Trends 0.076 0.005 14.826 <0.001 ∗∗∗

NNAR 0.081 0.005 15.736 <0.001 ∗∗∗

Table S10 Results of the linear regression analysis of the errors of the different models when using
London as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.040 0.005 7.934 <0.001 ∗∗∗

NNAR with Google Trends 0.083 0.005 16.182 <0.001 ∗∗∗

NNAR 0.081 0.005 15.639 <0.001 ∗∗∗

Table S11 Results of the linear regression analysis of the errors of the different models when using
United Kingdom as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.011 0.005 2.082 <0.05 ∗

NNAR with Google Trends 0.081 0.005 15.763 <0.001 ∗∗∗

NNAR 0.081 0.005 15.758 <0.001 ∗∗∗

Table S12 Results of the linear regression analysis of the errors of the different models when using
Holiday as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.002 0.005 0.308 >0.70
NNAR with Google Trends 0.082 0.005 15.971 <0.001 ∗∗∗

NNAR 0.082 0.005 15.867 <0.001 ∗∗∗

Table S13 Results of the linear regression analysis of the errors of the different models when using
Color as the Google Trends topic.

Model Estimated coefficient Standard error z p

ARIMA with Google Trends 0.019 0.005 3.625 <0.001 ∗∗∗

NNAR with Google Trends 0.082 0.005 15.996 <0.001 ∗∗∗

NNAR 0.081 0.005 15.728 <0.001 ∗∗∗
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Results for all museums

In Figs. S3, S4 and S5, we depict the results shown in Fig. 1 in the main text for

the remaining 13 museums in our analysis.

Figure S3 Rapid estimates of museum and gallery visitor numbers using Google data | Refer to
the caption of Fig. 1 in the main text for further details.
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Figure S4 Rapid estimates of museum and gallery visitor numbers using Google data | Refer to
the caption of Fig. 1 in the main text for further details. In this figure, NCM Museum stands for
National Coal Mining Museum of England.

Figure S5 Rapid estimates of museum and gallery visitor numbers using Google data | Refer to
the caption of Fig. 1 in the main text for further details. In this figure, NM Liverpool stands for
National Museums Liverpool.
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