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I. DETERMINING TRANSITION PROBABILITIES

According to Eqs. (10) and (11) in the main text, the transition probabilities pAi , qAi ,

pBi , and qBi at the ideological positions i ∈ {1, . . . , N} are not uniquely determined by a

given ideology distribution. The reason is that in Eqs. (10) and (11) only the fractions pi/qi

are relevant for determining the stationary distribution of the ideology chain. To identify

meaningful transition probabilities, we account for the fact that voters with polar ideological

positions are less likely to adopt more moderate ideological positions. Furthermore, we

expect larger transition probabilities in the neutral ideology regime. As initial values, we

use the transition probabilities

pi =

0.2 · αi for i < N/2,

0.2 otherwise,
(S1)

and

qi =

0.2 · αi for i > N/2,

0.2 otherwise.
(S2)

We consider N = 20 states and we set α = 1.1 as starting values. The corresponding prob-

ability curves for the chosen starting values are shown in the upper left panel of Fig. S1.

We discuss the influence of noise on transition probabilities and the resulting opinion distri-

butions in Sec. IV. After this initialization, we use a least-square optimization to find the

transition probabilities that describe the Gaussian ideology distribution shown in Fig. 3 of

the main text. The corresponding transition probabilities and fractions pi/qi are shown in

the middle left and bottom left panel of Fig. S1, respectively. In the right panels of Fig. S1,

we show that starting from another initial distribution may lead to different transition prob-

abilities, but to the same fractions pi/qi. We again note that according to Eqs. (10) and

(11) in the main text, a given ideology distribution is uniquely determined by the fractions

pi/qi.
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Figure S1. Determining transition probabilities. We numerically determine the transition

probabilities describing the Gaussian ideology distribution shown in Fig. 3 in the main text. In the

top left panel, we start from initial transition probabilities as defined by Eqs. (S1) and (S2) and

use a least-square optimization method to determine the transition probabilities of the Gaussian

ideology distribution. The results are shown in the middle left panel and the corresponding fraction

p(x)/q(x+∆x) is shown in the bottom left panel. In the right panels, we repeat the same procedure

for an initially uniform probability distribution. The fractions p(x)/q(x + ∆x) are unaffected by

this choice. Note that ∆x corresponds to 2/(N − 1) according to the definitions in the main text.

In all shown plots, we use the convention that qi+1 is the probability of an opinion change from

state i+ 1 to state i.
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Figure S2. Initiative strength distributions across time. We determine the probability

density functions (PDFs) of the initiative impacts λA and λB using Bayesian Markov Chain Monte-

Carlo. The values of λA become larger over time, whereas the values of λB are more concentrated

around unity.

II. INITIATIVE STRENGTH DISTRIBUTIONS

In the main text we have outlined that the initiative impact λA of self-identified Democrats

grew in the period from 1994 to 2017. In contrast, the initiative impact λB of self-identified

Republicans remained much more concentrated around unity and grew only little in the last

years. In Fig. 6 of the main text, we show the mean values and standard deviations of λA and

λB. These quantities were obtained from the corresponding Bayesian Markov Chain Monte-

Carlo distributions of Fig. S2. These distributions also show that the initiative impact λA

increases with time. In addition, we observe that the width of the distribution of λA is

getting larger over time, because not all features of the ideology-distribution evolution can

be captured using a single parameter, namely the initiative impact. This observation is also

reflected by the increasing standard deviation in Fig. 6 in the main text. For self-identified

Republicans, the corresponding distributions of λB are more concentrated around the initial
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distribution of 1994. The broadening of the associated distributions’ widths is also less

pronounced.

III. BAYESIAN MARKOV CHAIN MONTE CARLO

To compute the distribution of the parameter set θ ∈ {λA, λB} of the ideology chain as

defined by Eqs. (10) and (11) in the main text, we have to determine the probability distri-

bution P (θ|D) given our data D on the distribution of ideologies of self-identified Democrats

and Republicans. According to Bayes’ theorem, we express the posterior distribution

P (θ|D) ∝ P (D|θ)P (θ) , (S3)

in terms of the likelihood function P (D|θ) and the prior parameter distribution P (θ). We

use a uniform prior distribution (between 0.5 and 2.0) and a Gaussian likelihood function

P (D|θ) ∝ exp

(
− E

2

2σ2

)
, (S4)

of the error E with zero mean and variance σ2. Next, we use the prediction of our modelXi(θ)

for a given parameter set θ and the actual ideology distribution data Di (i ∈ {1, 2, . . . , 20})
to compute the least square error

E2 =
20∑
i=1

[Di −Xi (θ)]2 (S5)

as our error estimate in Eq. (S4) [1]. For a given prior parameter distribution P (θ), we

compute the posterior distribution P (D|θ) using Bayesian Markov chain Monte-Carlo sam-

pling with a Metropolis update scheme [1, 2]. After initializing the parameter vector with

θ0 drawn from the prior distribution P (θ), the nth iteration of the algorithm is defined by

the following updates:

1. A new parameter set θ∗ is drawn from the proposal distribution J (θ∗|θn) (see below).

2. The acceptance probability for θ∗ is computed according to (Metropolis algorithm)

r = min

(
P (θ∗|D)

P (θn|D)
, 1

)
= min

(
P (D|θ∗)P (θ∗)

P (D|θn)P (θn)
, 1

)
. (S6)

3. Draw a random number ε ∼ U(0, 1) and set

θn+1 =

θ
∗, if ε < r,

θn, otherwise.
(S7)
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For a uniform prior distribution, this update procedure implies that a new parameter set is

always accepted if the new likelihood function value is greater than or equal to that of the

previous iteration (i.e., for P (D|θ∗) ≥ P (D|θn)). For the described Metropolis algorithm,

the proposal distribution J (θ∗|θn) must be symmetric. According to Ref. [2], a multivariate

Gaussian distribution

J (θ∗|θn) ∼ N
(
θn|λ̃2Σ

)
(S8)

may be used as proposal distribution. The covariance matrix is denoted by Σ and the

corresponding scaling factor by λ̃. Every 500 iterations, the covariance matrix and the

scaling factor are updated, using the following update procedure [1, 2]:

Σk+1 = pΣk + (1− p)Σ∗,

λ̃k+1 = λ̃k exp

(
α∗ − α̂
k

)
,

(S9)

where Σ∗ and α∗ are the covariance matrix and the acceptance rate of the last 500 iterations,

respectively. The remaining parameters are p = 0.25, Σ0 = I, and λ0 = 2.4/
√
d, where I is

the d×d identity matrix and d the number of estimated parameters. The target acceptance

rate is [2]

α̂ =

0.44 if d = 1,

0.23 otherwise.
(S10)

To evaluate Eq. (S6), we have to compute the least square error for the new proposed pa-

rameter set θ∗ according to Eq. (S5) to obtain the likelihood function value P (D|θ∗) based

on Eq. (S4). For implementing a convergence test, we set the variance of our likelihood

distribution to σ2 = 1/10. Convergence is measured in terms of the Gelman-Rubin Test [2].

Therefore, we consider four independent Markov Chains. Every chain is initialized with a

different random parameter set that is drawn from the corresponding prior distributions.

The posterior parameter distribution is considered to be converged if the variance between

the chains is similar to the variance within the chain (Gelman-Rubin Test). In Fig. 3, we

illustrate the convergence behavior. We first let the four chains evolve for 104 iterations to

then apply the Gelman-Rubin Test. After reaching convergence, we generate 104 more sam-

ples without updating the covariance matrix. These samples define the posterior parameter

distribution.
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Figure S3. Convergence of Bayesian Markov Chain Monte Carlo parameter estimation.

We show the evolution of the error as defined by Eq. (S5) for four different chains with different

initial conditions. The algorithm is considered to be converged to the posterior distribution if

the variance between the chains is similar to the variance within the chains (which is precisely

captured by the Gelman-Rubin Test) [2]. We first let the system evolve for 104 iterations to then

apply the Gelman-Rubin Test. After passing this convergence test, we generate 104 more samples

without updating the covariance matrix to obtain the final parameter distributions. Fluctuations

that appear for more than 103 iterations are a result of sampling values of λA and λB from the

true distributions (cf. Fig. S2).

IV. INFLUENCE OF NOISE

To examine the robustness of the transition-probability rescaling, we allow that the tran-

sition probabilities pAi , qAi , pBi , and qBi of the discrete locations i ∈ {1, . . . , N} may be

subject to noise. To analyze the propagation of noise effects in the transition-probability

rescaling process, we consider relative fluctuations in the initial transition probabilities by

an amount of ε ∈ [0, 1]. For example, we map each value of pAi to a value in the interval[
(1− ε)pAi , (1 + ε)pAi

]
. For a uniformly distributed random variable u ∼ U(0, 1), we map

pAi to [1 + ε(2u− 1)] pAi and apply the same mapping to the other transition probabilities.

In Fig. S4, we show two examples of noise influences (ε = 0.05 and ε = 0.1) on the initial

transition probabilities (left panels) and the rescaled ones (right panels). In both cases, the

noisy data (blue and red disks) are still in good qualitative agreement with the unperturbed

Gaussians (grey solid lines). This suggests that the transition-probability rescaling is also

applicable for noisy data if the noise influence is not too large.
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Figure S4. Influence of noise. We show the influence of noise effects by considering relative

fluctuations in the transition probabilities pAi , qAi , pBi , and qBi (i ∈ {1, 2, . . . , 21}) by an amount of

ε. We map each value of pAi to [1 + ε(2u− 1)] pAi where u ∼ U(0, 1) and apply the same mapping

to the other transition probabilities. In the top panels, we set ε = 0.1; and we set ε = 0.1 in the

bottom panels. The perturbed data points are represented by blue and red dots. The grey solid

lines show unperturbed Gaussians. We rescaled the probabilities in the right panels according to

Eqs. (10) and (11) of the main text by setting λ = λA = λB = 1.13.
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