Supplementary Information for: Unraveling the hidden organisation of urban systems and their mobility flows

Riccardo Gallotti¹,^{*} Giulia Bertagnolli^{1,2}, and Manlio De Domenico^{1†}

¹ CoMuNe Lab, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (TN), Italy and ² Department of Mathematics, University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy

Supplementary Figure 1: Dependance of integration of topological networks on edge density (a) The value of integration for the topological functional networks is strictly linked to the edge density. As expected for topological networks, the larger the edge density the larger the integration. (b) The integration for the structural networks is also strongly related to edge density.

Supplementary Figure 2: Understanding Structural and Functional Segregation. Similarly to what illustrated in Fig. 4, here we link the values of segregation for the structural network derived from Open Street Maps and the functional (topological and weighted) networks derived from the Foursquare flows. In this case, the range of values observed for the three networks are not consistent between, suggesting that an improved and correctly normalised definition of segregation is still needed. (a) The value of segregation for the topological functional networks is anti-correlated to the edge density, but less tightly than what observed for Integration. (b) Similarly, segregation for the structural network grows as edge density increases. (c) The value of segregation for the weighted functional networks seems instead to be linked to the total flow recorded in the city, i.e. is the sum of all weights in the network.

Supplementary Figure 3: Connecting network properties with urban scaling. Here we show how the network indicators we extracted from the Foursquare data depend upon city dimensions in terms of L, that is computed as the square root of the total surface area included in the data provided. As we observed in Supplementary Fig.2, functional segregation appears to be proportionate to the total weight of a city. The total weight can be decomposed to the product of three factors: $W_{tot} = N^2 \cdot ed \cdot \langle w \rangle$, where N is the number of nodes, ed the edge density and $\langle w \rangle$ the average weight. In the first three panels we illustrate the scaling behaviour for these three quantities. (a) Since we have built the network by coarse graining on a regular grid, it is natural that number of nodes is naturally proportionate to the square of L, i.e. the surface area. (b) The edge density decreases for larger cities, which leads to higher values of topological segregation and integration as the city grows. (c) Also the average weight of links decreases for larger cities, a factor contributing to a smaller values of segregation as the city grows, the fraction of area that is represented by hotspots obtained with the LouBar method (Louail et al 2014) decreases. All dashed lines represent the best fit for a power-law scaling. Given the limited number of points and decades the values have to be considered only as a rough indication which we include in this figure as we hope might inform further studies.

Supplementary Figure 4: Segregation and Integration of Random Geometric Networks of different sizes. In this paper, we generate RGNs by i) throwing N nodes in random locations in a square of edge L; ii) connecting all node pairs (i, j) with distance d(i, j) < r; iii) rewiring a fraction α of edges. Here, to study the effect of size, we generate networks with identical node density N/L^2 and with no rewiring $\alpha = 0$. For each value of L and r we averaged the values of segregation (modularity Q and integration GCE). The result show that, in this scenario, segregation and integration are strongly anti-correlated. High integration is attained for small networks (L = 10) with large r, while the opposite yields high segregation.

Supplementary Figure 5: Integration and segregation for topological network and disaggregated by month. Flows are stratified according to different months (multiple points), while the grey square letter of a city name falls in correspondence of the values for the whole dataset. (a) Topological network. Remarkably, the values for topological network extracted by single months exhibit a large deviation from those aggregated over the whole period of analysis. The values for the monthly sub-samples range correspond to those of random geometric networks, suggesting that monthly data would be too under-sampled for making an analysis based only on the topological features of the networks. (b) Weighted network. In this case, the richer information captured by nodes allow to compare values for a single month (coloured dots) to those aggregated over the whole period considered (grey squares).

Supplementary Figure 6: Segregation and Integration for the Single Layer Functional Weighted Networks.

Supplementary Figure 7: Average functional integration for different activity categories. Conversely from what observed in Fig 5c for integration, we observe no clear dependency of the effect of removing a layer with the average distance covered D in movement inside that layer. Again, the transport layer is displaying exceptional behaviour.

Supplementary Figure 8: The Complementary Cumulative Distribution Function of the number of check-ins per venue. The fat tail displayed by these curves illustrate the extremely high level of inhomogeneity of the flows captured by different venues, with a small fraction of venues capturing a significant amount of flow.

Supplementary Figure 9: Test of the measures of Segregation and Integration for the definition of city. In our dataset, the definition of city boundaries was already provided by Foursquare. This definition of city is possibly non-homogeneous. In this figure, we test the robustness of our metrics to the city definition by radially reducing the boundaries of the network. We took three cities that display a clear central structure (a) Paris, (b) Seoul and (c) London, and divided them into concentric circles of radius ranging as $[5, 10, 15, \ldots, R_{max}]$ around the center of mass of the network. The results of this analysis support that the details of the peripheral boundaries are minor, as in all three cities we observe relevant deviations from the registered values only when the city is reduced in its core for R < 15.

* Electronic address: rgallotti@gmail.com
† Electronic address: mdedomenico@fbk.eu

HEALTH	FOOD	EDU ENTERT FOOD
249 158	776 249	249
453 3261 40493	8453 3261	3261
872 40874 114713		69872 40874
3272 3272	2796 1042	1042
300 58776 123149	90612 9000 58776 1	9000 58776 1
419 297854 350548	341340 97419 297854	97419 297854
315 776	1026 315	315
587 25174 16515	4687 25174	25174
937 128007 102215	56937 128007	128007
153 179 1167	868 153 179	153 179
836 567 77615		836 567
187 19280 156034	21187 19280 1	19280 1
247 238	1112 247	247
441 2909 44297	167685 5441 2909	5441 2909
391 56118 180268	71091 56118 1	56118 1
354 317 497	807 354 317	354 317
211 3526 23904	65811 6211 3526	6211 3526
275 43014 77929	57275 43014	43014
77 97		22
566 320 26223	53640 566 320	566 320
746 12296 72918	96499 13746 12296	13746 12296
120 224 562		120 224
244 4699 45495	75432 1244 4699	1244 4699
988 51111 123281	143171 24988 51111 1	l 24988 51111 1
168 818	755 168 818	168
904 24290 24209	99038 904 24290	904 24290
995 131287 112799	164809 20995 131287	20995 131287
199 333 1073	2074 199 333	199 333
320 632 27966	92359 320 632	320 632
475 21226 121862	12475 21226	21226

city	Q	Ν	Z	GCE	Е
Chicago	0.4469	7.0	48.8229	0.0093	103.8097
Istanbul	0.5645	8.0	75.3107	0.003	30.0698
Jakarta	0.4554	8.0	144.0917	0.013	65.0682
London	0.4634	9.0	-2.8755	0.006	65.2905
Los Angeles	0.5213	7.0	290.1588	0.019	67.9652
New York	0.4735	7.0	0.6814	0.0039	85.1583
Paris	0.3935	8.0	-21.7259	0.0122	124.7085
Seoul	0.4572	9.0	88.0736	0.0129	119.7564
Singapore	0.454	10.0	39.3882	0.0104	107.9742
Tokyo	0.5259	11.0	3.2594	0.0058	63.8658

Supplementary Table II: Table of the values of Segregation (Q) and Integration (GCE) for the weighted functional networks. We also provide the number of communities N identified, the Z-score of the segregation against a configuration model and the non-normalised efficiency E. We report that segregation is highly significant with the notable exception of New York city.

city	Q	Ν	Z	GCE	Е
Chicago	0.1452	3.0	181.7603	0.7312	0.7322
Istanbul	0.2834	3.0	477.7494	0.4783	0.5121
Jakarta	0.1296	3.0	147.725	0.6391	0.6472
London	0.1901	4.0	212.8296	0.5935	0.5946
Los Angeles	0.1671	3.0	246.2364	0.6655	0.6666
New York	0.1605	3.0	155.8727	0.6685	0.6707
Paris	0.0844	4.0	54.1208	0.7195	0.7196
Seoul	0.0855	3.0	75.2966	0.7226	0.7231
Singapore	0.0841	3.0	83.2197	0.6934	0.6944
Tokyo	0.2354	4.0	297.3499	0.5469	0.5492

Supplementary Table III: Table of the values of Segregation (Q) and Integration (GCE) for the topological functional networks. We also provide the number of communities N identified, the Z-score of the segregation against a configuration model and the non-normalised efficiency E. All values of segregation are highly significant. The unnormalised efficiency E is here the same as the GCE by definition.