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Figure 1 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le. Weighted barbell network

1 Results of perturbing two nodes in toy networks
The plots shown in figures 1 - 3 show additional results for the case of perturbing

single edges for weighted barbell networks, and unweighted ring and Erdős–Rényi

networks.

In figures 4 - 8 we present the results of changing two individual edges, and ob-

serving the resulting change in λ for the range of perturbations applied. We overlay

this with a line of constant le, to assess the performance of our approximation.

2 Perturbation theory approach to deriving network eigenvalue
derivatives

2.1 Undirected case

Consider a perturbation to the adjacency matrix A:

A→ A + εB (1)

and the resulting first order changes to the leading eigenvalue λ and the associated

eigenvector |λ〉:

λ = λ0 + ελ (2)
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Figure 2 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le. Unweighted ring network.

|λ〉 = |λ〉0 + ε |λ〉1 (3)

Substituting these into our eigenvalue equation

(A + εB)(|λ〉0 + ε |λ〉1) = (λ0 + ελ1 + ...)(|λ〉0 + ε |λ〉1 + ...) (4)

and considering terms up to 1st order in ε

A |λ〉0 + εB |λ〉0 + εA |λ〉1 = λ0 |λ〉0 + ελ1 |λ〉0 + ελ0 |λ〉1 (5)

Then we can consider each of the terms in εn separately,

ε0 : A |λ〉0 = λ0 |λ〉0 (6)

ε1 : B |λ〉0 + A |λ〉1 = λ1 |λ〉0 + λ0 |λ〉1 (7)

By multiplying the equation for ε1 by the left eigenvector 0〈λ|, and making use of

the hermitian properties of A such that 0〈λ|A = λ0 0〈λ|, we find

〈λ|B|λ〉0 0 = λ1 〈λ|λ〉0 0 (8)
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Figure 3 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le. Unweighted Erdős–Rényi network

The perturbation we are considering is changing one row, and one column, i.e.

where Bij = Aij if i or j are the row/column we are changing, zero otherwise:

Bij =

Aij if i = k or j = k

0 otherwise

Then, expanding the indices,

∑
ij

λ0,iBijλ0,j =
∑
ij

λ0,iAijλ0,jδik +
∑
ij

λ0,iAijλ0,jδjk = 2
∑
j

λ0,kAkjλ0,j (9)

Where we have re-labelled the indices for the second term and have evaluated the

δ’s. Leading us to the result:

le =
∂λ

∂Aij
= 2λ0,iλ0,j (10)

where λ0,i is the ith component of the eigenvector corresponding to the leading

eigenvalue of A
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Figure 4 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le, for the case of two edges changing. The plots consider one of the two perturbed edges. Barbell
network, with equal initial weights

2.2 Directed case

For the directed case, we still have that

ε1 : B |λ〉1 + A |λ〉0 = λ1 |λ〉0 + λ0 |λ〉1 (11)

but we can’t use the hermitian properties of the matrix A as for directed networks

A is generally not symmetric. We can however consider the matrix M = AAT

and perturbation M → M + εC, and use the symmetric result from this. This is

useful since the singular values of matrix A are defined as the square root of the

eigenvalues of AAT, such that:

∂λM = 2sA∂sA (12)

where λM is the leading eigenvalue of M and sA is the leading singular value of A.

We can then make use of our result above for the symmetric matrix,

〈λM |C|λM 〉0 0 = λM1 (13)

Where 0〈λM | and |λM 〉0 are the left and right eigenvectors of M. For the directed

case, our perturbation is changing just a row (or column) independently, i.e.

Cij =
{
Mij if i = k 0 otherwise (14)

Then, expanding the indices,∑
ij

λM0,iCijλ
M
0,j =

∑
ij

λM0,iMijλ
M
0,jδik =

∑
j

λM0,kMkjλ
M
0,j (15)
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Figure 5 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le, for the case of two edges changing. The plots consider one of the two perturbed edges. Ring
network with randomly assigned weights.

Leading us to the result

∂sA

∂Mij
=
λM0,iλ

M
0,j

2sA
(16)

where λM0,i is the ith component of the eigenvector corresponding to the leading

eigenvalue of M In both the directed and undirected case above, it is worth noting

that the derivations can be generalised to allow new links to be added/removed,

however new nodes cannot be added or removed.

3 Kernel Density Estimation for conditional probability estimation
We make use of multivariate conditional Kernel Density Estimation (KDE) to find

the probability distributions for the values of le. The functional form of the KDE is

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(

(x− xi)
h

)
(17)

where

Kh(x) =
1

h
Kx
h

(18)

is the kernel function, a non-negative function. The parameter h is the bandwith,

a smoothing parameter. We have used a Gaussian kernel:

K =
1

σ
√

2π
exp−1

2

(
x− µ
σ

)
(19)
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Figure 6 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le, for the case of two edges changing. The plots consider one of the two perturbed edges.
Erdős–Rényi network with randomly assigned weights

4 Dataset descriptions
The first dataset considered tracks bilateral trade flows between states from 1870-

2014, describing import and export data in current U.S. dollars for pairs of sovereign

states [1]. This dataset is interesting not just due to its relevance to our focus on

financial markets, but also due to an observed growth across time, apart from in

two time periods corresponding to the First and Second World Wars.

The second dataset considered was a dataset of private messages sent on an online

social network at the University of California. An edge (u, v, t) means that user

u sent a private message to user v at time t. As this network is unweighted, the

weights of all of the edges have been set to 1. The network was aggregated to daily

snapshots, in which the edge weight is the number of times that edge is active during

that day.

Finally, in order to observe the effects of different trading structures on the output

of our methods, we applied our techniques to transaction reports relating to three

different equity stocks traded on the UK capital markets. The data was aggregated

daily, and covers a 2 year period from January 2018[1]. The Equity-3 dataset was

analysed for the shorter time range of 03/06/2019 to 05/11/2019. We chose to

study networks of transactions for stocks on energy companies due to the high

level of trading activity in is sector. The results displayed in this paper consider

the giant component networks of 3 different stocks. The first two instruments were

traded without the presence of CCPs, one focusing on oil and gas exploration and

production and the second focusing on renewable and alternative energy. The third

instrument, another oil and gas production stock, shows a network dominated by

[1]the Equity-3 dataset was analysed for a 5 month period ending in November 2019
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Figure 7 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le, for the case of two edges changing. The plots consider one of the two perturbed edges. Barbell
network, with randomly assigned weights.

dataset # nodes # edges connectivity density reciprocity correlation coefficient
Equity - 1 232 6, 961 30% 12.99% 67.72 62.9%
Equity - 2 94 3,684 39.2% 42.14% 75.03% 56.84%
Equity -3 263 9.094 34.58% 13.2% 57.66% 51.23%

Table 1 Network statistics for the three Equity datasets

the presence of a CCP. Due to the sensitivity of the data, these have been referred

to as Equity networks 1, 2 and 3 throughout this paper.

4.1 Summary statistics for the Equity datasets

The Equity data was made available by the FCA for use in this study, and is not

publically available. To provide the reader with additional context, here we include

some high level network statistics for these networks. All statistics are based on the

networks following the removal of nodes which appear on less than 5 days in the

sample, which we classed as ‘inactive’.

We see that all three networks have similar connectivities, but Equity-3 is signifi-

cantly denser than the other two and shows a higher level of reciprocity. All datasets

show similar values for the correlation coefficient of the adjacency matrix.

We can see from figures 10 and 11 that large transaction values are more likely to

have a high reciprocity for the first and second dataset. However the same cannot

be said for the third Equity dataset, as shown in figure 12.

The evolution of high level network statistics are shown in figures 13,14, and 15.

Here we see that the networks fluctuate around a relatively stable mean, with no

obvious level of growth or decay across the time period.

It is further interesting to note that the third network considered shows the pres-

ence of a hierarchy in the network, due to it being an instrument that is traded
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Figure 8 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le, for the case of two edges changing. The plots consider one of the two perturbed edges. Ring
network with equal weights.

mainly through the use of Central Clearing Parties (CCP), producing a tiered

structure as shown in figure 16. Such a structure can be identified following the

identification of a dominant node in the network, i.e. a node with significantly

higher degree, and examining its ego network.

5 Parameter estimations
5.1 Estimation of ρ and α

We assume in this section that our networks can be described by a model in which

the probability of an edge changing is given by

P (∆) = θe =


0 αlρe ≤ 0

αlρe 0 < αlρe < 1

1 αlρe ≥ 1

The maximum likelihood estimate of θ then follows the same procedure as in the

case of a (potentially biased) coin toss - given a sample of changes ki, the likelihood

of observing these changes given θ is

L(k1, k2, ...kn|θ) =
∏
i

f(ki|θi) (20)

where f(ki|θi) follows the Bernoulli distribution θkee (1 − θe)
1−ke where ke is the

observed outcome of edge e. Taking the logarithm of this, our log-likelihood is given

by

ln(L(k|θ)) =

N∑
e

keln(θe) + (1− ke)ln(1− θe) (21)
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Figure 9 Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant
le, for the case of two edges changing. The plots consider one of the two perturbed edges.
Erdős–Rényi network with equal weights

Since αlρe is constrained to be a probability, to estimate the parameters which result

in the maximum likelihood, we need to minimise the negative log-likelihood with

respect to multiple inequality constraints:

0 ≤ αlρe ≤ 1 (22)

Where we have one inequality constraint for each le. To do this, we make use of the

Karush-Kuhn-Tucker conditions [2] and numerical optimisation, to find the optimal

saddle point which maximises L with whilst satisfying these constraints.

5.2 Estimation of β and γ

For the case of the distribution of edge changes drawn from a Gaussian distribution

with µ=0 and σ = βlγe , the log-likelihood is given by

ln(L) =

N∑
e

ln

(
1√

2πβlγe

)
exp

(
−(∆Arele )2

2β2l2γe

)
(23)

where ∆Arele refers to the observed relative change of edge e. Differentiating with

respect to β,

β =

√√√√ 1

N

N∑
e

(∆Arele )2

l2γe
(24)

From which we recover the expected standard deviation for a Gaussian in the case

of γ=0.
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Differentiating with respect to γ,

∂ ln(L)

∂γ
=

N∑
e

− ln(le) +
∂

∂γ

(∆Arele )2

2β2
exp (−2γ ln le) (25)

which when set to 0,

N∑
e

ln(le)

(
1 +

(∆Arele )2ln(le)

β2l2γe

)
(26)

Substituting 24 for β, and solving numerically allows us to produce an estimate for

γ.

6 Comparison of data distributions to model
Figure 17 shows the bulk of the distributions for P (∆Aij = 0| ln(le)) for our 5

datasets, in comparison to the equivalent generated from our model for network

evolution given by equation 27:

At+1
ij = VtijAtijU tij + (1− Vtij)Atij (27)
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Reciprocity vs. price for the Equity networks

Figure 10 Equity-1

Figure 11 Equity-2

Figure 12 Equity-3
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Figure 13 Daily counts of nodes and edges, density and reciprocity across the entire investigation
period for Equity-3

Figure 14 Daily counts of nodes and edges, density and reciprocity across the entire investigation
period for Equity-2
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Figure 15 Daily counts of nodes and edges, density and reciprocity across the entire investigation
period for Equity-3

Figure 16 Example of a tiered structure in the GWCC of the trading network for an instrument
frequently traded via an individual CCP.
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Figure 17 P (∆Aij = 0| ln(le)) as a function of ln(le) for the 5 real datasets, overlaid with the
distributions for data generated according to the model in 27


