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A Classes to construct
ImageNet100

To build the ImageNet100 dataset, we used the
classes shared by the CMC [1] authors in the sup-
plementary material of their publication. We also
share these classes in Tab. 1.

100 selected classes from ImageNet

n02869837 n01749939 n02488291 n02107142
n13037406 n02091831 n04517823 n04589890
n03062245 n01773797 n01735189 n07831146
n07753275 n03085013 n04485082 n02105505
n01983481 n02788148 n03530642 n04435653
n02086910 n02859443 n13040303 n03594734
n02085620 n02099849 n01558993 n04493381
n02109047 n04111531 n02877765 n04429376
n02009229 n01978455 n02106550 n01820546
n01692333 n07714571 n02974003 n02114855
n03785016 n03764736 n03775546 n02087046
n07836838 n04099969 n04592741 n03891251
n02701002 n03379051 n02259212 n07715103
n03947888 n04026417 n02326432 n03637318
n01980166 n02113799 n02086240 n03903868
n02483362 n04127249 n02089973 n03017168
n02093428 n02804414 n02396427 n04418357
n02172182 n01729322 n02113978 n03787032
n02089867 n02119022 n03777754 n04238763
n02231487 n03032252 n02138441 n02104029
n03837869 n03494278 n04136333 n03794056
n03492542 n02018207 n04067472 n03930630
n03584829 n02123045 n04229816 n02100583
n03642806 n04336792 n03259280 n02116738
n02108089 n03424325 n01855672 n02090622

Table 1: The 100 classes selected from ImageNet
to construct ImageNet100.
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B Pseudo-Code of SCE

1 # data loader : l oade r o f batches
2 # bsz : batch s i z e
3 # epochs : number o f epochs
4 # T1 : weak d i s t r i b u t i o n o f data augmentations
5 # T2 : s t rong d i s t r i b u t i o n o f data augmentations
6 # f s , g s , h s : o n l i n e encoder , p ro j e c to r , and opt i on a l p r e d i c t o r
7 # f t , g t : momentum encoder and p r o j e c t o r
8 # queue : memory b u f f e r
9 # tau : o n l i n e temperature

10 # tau m : momentum temperature
11 # lambda : c o e f f i c i e n t between c o n t r a s t i v e and r e l a t i o n a l a spec t s
12 # symmetry loss : i f True , symmetries the l o s s
13
14 de f s c e l o s s ( z1 , z2 ) :
15 s im2 pos = ze ro s ( bsz )
16 s im2 neg = einsum ( ”nc , kc−>nk” , z2 , queue )
17 sim2 = cat ( [ s im2 pos , s im2 neg ] ) / tau m
18 s2 = softmax ( sim2 )
19 w2 = lambda ∗ one hot ( sim2 pos , bsz+1) + (1 − lambda ) ∗ s
20
21 s im1 pos = einsum ( ”nc , nc−>n” , z1 , z2 )
22 s im1 neg = einsum ( ”nc , kc−>nk” , z1 , queue )
23 sim1 = cat ( [ s im1 pos , s im1 neg ] ) / tau
24 p1 = softmax ( sim1 )
25
26 l o s s = c r o s s e n t r o p y ( p1 , w2)
27 re turn l o s s
28
29 f o r i in range ( epochs ) :
30 f o r x in data loader :
31 x1 , x2 = T1( x ) , T2( x )
32
33 z1 s , z 2 t = h s ( g s ( f s ( x1 ) ) ) , g t ( f t ( x2 ) )
34 z 2 t = stop grad ( z 2 t )
35
36 l o s s = s c e l o s s ( z1 s , z 2 t )
37 i f symmetry loss :
38 z1 t , z 2 s = g t ( f t ( x1 ) ) , h s ( g s ( f s ( x2 ) ) )
39 z 1 t = stop grad ( z 1 t )
40 l o s s += s c e l o s s ( z2 s , z 1 t )
41 l o s s /= 2
42 l o s s . backward ( )
43
44 update ( f s . params )
45 update ( g s . params )
46 update ( h s . params )
47 momentum update ( f t . params , f s . params )
48 momentum update ( g t . params , g s . params )
49
50 f i f o u p d a t e ( queue , z 2 t )
51 i f symmetry loss :
52 f i f o u p d a t e ( queue , z 1 t )

Algorithm 1: Pseudo-Code of SCE in Pytorch style
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C Proof Proposition 1.
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First we rewrite (1) to retrieve the LInfoNCE loss.
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Because s2ii = 0 and s2i is a probability distribu-
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Backbone Dataset
Projector

Input Buffer ema LR Batch WD
Layers Hid dim Out dim BN

R-18 CIFAR 2 512 128 hid 322 4, 096 0.900 0.06 256 5e−4

R-18 STL10 2 512 128 hid 962 16, 384 0.996 0.06 256 5e−4

R-18 Tiny-IN 2 512 128 hid 642 16, 384 0.996 0.06 256 5e−4

R-50 IN100 2 4096 256 no 2242 65, 536 0.996 0.3 512 1e−4

R-50 IN1k 3 2048 256 all 2242 65, 536 0.996 0.5 512 1e−4

Table 2: Architecture and hyperparameters used for pretraining on the different datasets. LR stands for
the initial learning rate, WD for weight decay, BN for batch normalization [2], Hid for hidden, Dim
for dimension, ema for the initial momentum value used to update the momentum branch. For BN:
“no” means no batch normalization is used in the projector, “hid” means batch normalization after each
hidden layer, “all” means batch normalization after the hidden layer and the output layer.

D Implementation details

D.1 Ablation study and baseline
comparison for images

Pretraining Implementation details. We use
the ResNet-50 [3] encoder for large datasets and
ResNet-18 for small and medium datasets with
changes detailed below. We pretrain the mod-
els for 200 epochs. We apply by default strong
and weak data augmentations, defined in Tab.
1 in the main paper, with the scaling range for
the random resized crop set to (0.2, 1.0). Specific
hyperparameters for each dataset for the projector
construction, the size of the input, the size of the
memory buffer, the initial momentum value, the
initial learning rate, the batch size and the weight
decay applied can be found in Tab. 2. We use the
SGD optimizer [4] with a momentum of 0.9. A lin-
ear warmup is applied during 5 epochs to reach
the initial learning rate. The learning rate is scaled
using the linear scaling rule and follows the cosine
decay scheduler without restart [5]. The momen-
tum value to update the target branch follows a
cosine strategy from its initial value to reach 1 at
the end of training. We do not symmetrize the loss
by default.

Architecture change for small and
medium datasets. Because the images are
smaller, and ResNet is suitable for larger images,
typically 224× 224, we follow guidance from Sim-
CLR [6] and replace the first 7× 7 Conv of stride
2 with a 3 × 3 Conv of stride 1. We also remove
the first pooling layer.

Evaluation protocol. To evaluate our pre-
trained encoders, we train a linear classifier fol-
lowing [7, 8]. We train for 100 epochs on top of
the frozen pretrained encoder using an SGD opti-
mizer with an initial learning rate of 30 without
weight decay and a momentum of 0.9. A sched-
uler is applied to the learning rate that is decayed
by a factor of 0.1 at 60 and 80 epochs. The data
augmentations for the different datasets are:

• training set for large datasets: random
resized crop to resolution 224× 224 with the
scaling range set to (0.08, 1.0) and a random
horizontal flip with a probability of 0.5.

• training set for small and medium
datasets: random resized crop to the dataset
resolution with a padding of 4 for small
datasets and the scaling range set to
(0.08, 1.0). Also, a random horizontal flip
with a probability of 0.5 is applied.

• validation set for large datasets: resize
to resolution 256 × 256 and center crop to
resolution 224× 224.

• validation set for small and medium
datasets: resize to the dataset resolution.

D.2 Imagenet study

Pretraining implementation details. We use
the ResNet-50 [3] encoder and apply strong-α and
strong-β augmentations, defined in Tab. 1 in the
main paper, with the scaling range for the ran-
dom resized crop set to (0.2, 1.0). The batch size is
set to 4096 and the memory buffer to 65,536. We
follow the same training hyperparameters as [9]
for the architecture. Specifically, we use the same
projector and predictor, the LARS optimizer [10]
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with a weight decay of 1.5·10−6 for 1000 epochs of
training and 10−6 for fewer epochs. Bias and batch
normalization [2] parameters are excluded. The
initial learning rate is 0.5 for 100 epochs and 0.3
for more epochs. It is linearly scaled for 10 epochs
and it follows the cosine annealed scheduler. The
momentum value follows a cosine scheduler from
0.996 for 1000 epochs, 0.99 for fewer epochs, to
reach 1 at the end of training. The loss is sym-
metrized. For SCE specific hyperparameters, we
keep the best from ablation study: λ = 0.5, τ = 0.1
and τm = 0.07.

Multi-crop setting. We follow Hu et al. [11]
and sample 6 different views. The first two views
are global views as without multi-crop, meaning
resolution of 224 × 224 and the scaling range for
random resized crop set to (0.2, 1.0). The 4 local
crops have a resolution of 192 × 192, 160 × 160,
128× 128, 96× 96 and scaling range (0.172, 0.86),
(0.143, 0.715), (0.114, 0.571), (0.086, 0.429) on
which we apply the strong-γ data augmentation
defined in Tab. 1 in the main paper.

Evaluation protocol. We follow the protocol
defined by [9]. Specifically, we train a linear clas-
sifier for 90 epochs on top of the frozen encoder
with a batch size of 1024 and a SGD optimizer
with a momentum of 0.9 and without weight
decay. The initial learning rate is 0.1 and scaled
using the linear scaling rule and follows the cosine
decay scheduler without restart [5]. The data
augmentations applied are:

• training set: random resized crop to resolu-
tion 224 × 224 with the scaling range set to
(0.08, 1.0) and a random horizontal flip with
a probability of 0.5.

• validation set: resize to resolution 256×256
and center crop to resolution 224× 224.

D.3 Video study

Pretraining implementation details. We used
the ResNet3D-18 and ResNet3D-50 networks [12]
following the Slow path of Feichtenhofer et al.
[13]. The exact architecture details can be found
in Tab. 3. We kept the siamese architecture used
for ImageNet in Sec. 4.1.3 and depending on
the backbone and pretraining dataset, the pro-
jector and predictor architectures as well as the
memory buffer size vary and are referenced in
Tab. 4. The LARS optimizer with a weight decay

stage ResNet3d-18 ResNet3D-50

conv1
1 × 72, 64 1 × 72, 64

stride 1, 22 stride 1, 22

pool1
1 × 32,max 1 × 32,max

stride 1, 22 stride 1, 22

res2

[
1 × 32, 64

1 × 32, 64

]
× 2

1 × 12, 64

1 × 32, 64

1 × 12, 256

× 3

res3

[
1 × 32, 128

1 × 32, 128

]
× 2

1 × 12, 128

1 × 32, 128

1 × 12, 512

× 4

res4

[
3 × 32, 256

1 × 32, 256

]
× 2

3 × 12, 256

1 × 32, 256

1 × 12, 1024

× 6

res5

[
3 × 32, 512

1 × 32, 512

]
× 2

3 × 12, 512

1 × 32, 512

1 × 12, 2048

× 3

pool global average global average

Table 3: ResNet3D-18 and ResNet3D-50 net-
works.

of 1.10−6, batch normalization and bias parame-
ters excluded, for 200 epoch of training is used.
The learning rate follows a linear warmup until
it reaches an initial value of 2.4 and then follows
a cosine annealed scheduler. The initial learning
rate is scaled following the linear scaling rule and
the batch size is set to 512. The momentum value
follows a cosine scheduler from 0.99 to 1 and the
loss is symmetrized. To sample and crop different
views from a video, we follow Feichtenhofer et al.
[14] and sample randomly different clips from the
video that lasts 2.56 seconds. For Kinetics it cor-
responds to 64 frames for a frame rate per second
(FPS) of 25. Out of this clip we keep a number of
frames specified in the main paper. By default, we
sample two different clips to form positives and we
apply the strong-α and strong-β augmentations,
defined in Tab. 1 in the main paper, to the views.

Linear evaluation protocol details. We fol-
low Feichtenhofer et al. [14] and train a linear
classifier for 60 epochs on top of the frozen encoder
with a batch size of 512. We use the SGD optimizer
with a momentum of 0.9 and without weight decay
to reach the initial learning rate 2 that follows the
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Backbone Dataset
Projector Predictor

Buffer
Layers Hid dim Out dim BN Layers Hid dim Out dim BN

ResNet3D-18 K200 3 1024 256 all 2 1024 256 hid 32768
ResNet3D-18 K400 3 1024 256 all 2 1024 256 hid 65536
ResNet3D-50 K400 3 4096 256 all 2 4096 256 hid 65536

Table 4: Architecture and hyperparameters used for video pretraining. BN stands for for Batch Nor-
malization, Hid for hidden, Dim for dimension. For BN: ”hid” means batch normalization after each
hidden layer, ”all” means batch normalization after the hidden layer and the output layer.

Dataset τ τm = 0.03 τm = 0.04 τm = 0.05 τm = 0.06 τm = 0.07 τm = 0.08 τm = 0.09 τm = 0.1

CIFAR10 0.1 89.93 90.03 90.06 90.20 90.16 90.06 89.67 88.97
CIFAR10 0.2 89.98 90.12 90.12 90.05 90.13 90.09 90.22 90.34

CIFAR100 0.1 64.49 64.90 65.19 65.33 65.27 65.45 64.89 63.87
CIFAR100 0.2 63.71 63.74 63.89 64.05 64.24 64.23 64.10 64.30

STL10 0.1 89.34 89.94 89.87 89.84 89.72 89.52 88.99 88.41
STL10 0.2 88.4 88.23 88.4 88.35 87.54 88.32 88.80 88.59

Tiny-IN 0.1 50.23 51.12 51.41 51.66 51.90 51.58 51.37 50.46
Tiny-IN 0.2 48.56 48.85 48.35 48.98 49.06 49.15 49.66 49.64

Table 5: Effect of varying the temperature parameters τm and τ on the Top-1 accuracy.

linear scaling rule with the batch size set to 512.
A linear warmup is applied during 35 epochs and
then a cosine annealing scheduler. For training,
we sample randomly a clip in the video and ran-
dom crop to the size 224× 224 after short scaling
the video to 256. An horizontal flip is also applied
with a probability of 0.5. For evaluation, we follow
the standard evaluation protocol of Feichtenhofer
et al. [13] and sample 10 temporal clips with 3 dif-
ferent spatial crops of size 256×256 applied to each
temporal clip to cover the whole video. The final
prediction is the mean average of the predictions
of the 30 clips sampled.

Finetuning evaluation protocol details.
We follow Feichtenhofer et al. [14] for finetun-
ing on UCF101 and HMDB51. We finetune the
whole pretrained network and perform supervised
training on the 101 and 51 classes respectively for
200 epochs with dropout of probability 0.8 before
classification. We use the SGD optimizer with a
momentum of 0.9 and without weight decay to
reach the initial learning rate 0.1 that follows the
linear scaling rule with the batch size set to 64 and
a cosine annealing scheduler without warmup. For
training, we sample randomly a clip in the video
and random crop to the size 224× 224 after short
scaling the video to 256. We apply color jittering

with the strong augmentation parameters, defined
in Tab. 1 in the main paper, and an horizontal
flip with a probability of 0.5. For evaluation, we
follow the 30-crops procedure as for linear eval-
uation. Specific hyperparameter search for each
dataset might improve results.

E Temperature influence on
small and medium datasets

We made a temperature search on CIFAR10,
CIFAR100, STL10 and Tiny-ImageNet by vary-
ing τ in {0.1, 0.2} and τm in {0.03, ..., 0.10}. The
results are in Tab. 5. As for ImageNet100, we
need a sharper distribution on the output of the
momentum encoder. Unlike ReSSL [8], SCE do
not collapse when τm → τ thanks to the con-
trastive aspect. For our baselines comparison in
Sec. 4.2, we use the best temperatures found for
each dataset.
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