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A Bounds for characteristics

The annual reports of the GAA give information on the minimum, average, and

maximum of the following continuous characteristics: floor area, plot area, and

ratio of price to floor area; Gutachterausschuss für Grundstückswerte (2011,

2012, 2013, 2014, 2015). The information is based on houses transacted dur-

ing the year previous to the respective publication date. The information is

provided separately by house type (detached, semi-detached, terraced houses),

detailed further by the part of the city the house is located in (East, West),

and the vintage of the building (constructed before 1949 or since 1949). We use

the information for the years 2010-2014 and choose the bounds for each of the

three characteristics as the minimum of the minima and the maximum of the

maxima separately for each house type, location, and vintage. Table A1 shows

the resulting bounds that we place on the three continuous characteristics.

[Table A1 about here.]

B Semiparametric additive model

The nonparametric functions fj(x) for j = 1, 2, 3, 5 are modelled with the cubic

spline basis

(B1)

fj(x) = xβj1 +

Kj∑
k=2

|x− xjk|3βjk

=

Kj∑
k=1

bjk(x)βjk = bj(x)βj

The Kj−1 knots xj2, . . . , xjKj
are placed at the Kj−1 equally spaced quantiles

of x. There is no constant term, as it is considered in the vector z. The two

3



natural spline constraints
∑Kj

k=2 βjk = 0 and
∑Kj

k=2 βjkxjk = 0 are imposed, so

that the second derivative of fj(·) is zero outside [xj2, xjKj
], which reduces the

risk of extrapolation (Wood and Augustin 2002, p. 160). The nonparametric

function f4(x) is modelled with—again without a constant term—the thin plate

spline basis

(B2)

f4 (x) = x1β41 + x2β42 +

K4∑
k=3

b4k(||x− x4k||)β4k

=

K4∑
k=1

b4k(x)β4k = b4(x)β4

The two dimensional vector x = (x1, x2) contains the location coordinates and

we use the functions b1(x) = x1 and b2(x) = x2 for compact notation. We use

further ||u|| =
√

u′u and

b4k(||u||) =
1

8π
||u||2 log ||u||

if u is two-dimensional as it is in our application (Wood and Augustin 2002,

p. 171). The K4 − 2 location knots x4k are a subset of the actual locations of

the observations. We explain the selection of this subset below.

Using the vector representations of the univariate and bivariate spline func-

tions in the last lines of equations Eq. B1 and Eq. B2, we write our semipara-

metric model compactly as p = zγ + b(x)β + ε. Given Kj and λj for all j,

the stacked β and γ coefficient vectors are estimated separately for each of the

two data sets by penalized least squares

(B3)
(
γ̂, β̂

)
= arg min

γ,β

[
N∑

n=1

{pn − znγ − b(xn)β}2 +
J∑

j=1

λjβ
′
jDjβj

]

Choice of knots. For the cubic spline basis, we set Kj = 15 for j = 1, 2, 3, 5.

The 14 knots xjk are set at the equally distanced quantiles of the respective
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variable. This ensures that the variable range is adequately covered. For the

choice of knots for the thin plate spline basis, we follow Wood (2003). First,

for each of the two data sets, we draw a random sample with 2000 elements

from the locations xn of the N observations. Random sampling ensures that

areas that have observations will be covered adequately. The randomly drawn

locations are the initial set of knots x4k. We compute for each observation and

initial knot b4k(x) and arrange them all in a matrix of dimension N × 2000.

Since the dimension of this matrix is too large to be computationally feasible,

we use the eigenvalue decomposition described in Wood (2003) to reduce it.

This results in K4 = 152 knots for the geospatial regression spline.

Smoothing parameter. The smoothing parameter λj determines the de-

gree at which wiggliness of the estimate of fj is penalised. We select λ =

(λ1, . . . , λ5) by minimizing the double cross-validation (DCV) score

(B4) λ̂ = arg min
λ

N
∑N

i=1 (pi − p̂i(λ))2

{N − 1.5tr (H(λ))}2

where p̂i(λ) is the predicted price for a given set of λ values and H =

([ZB]′[ZB] + Sλ)−1 [ZB]′ is the hat matrix of the penalized least squares esti-

mator in Eq. B3. Here, [ZB] is the design matrix collecting the dummy vari-

ables and basis functions for the continuous variables. The matrix Sλ collects

the penalty terms (Wood 2017, pp. 249-50). DCV is a consistent estimator

of the mean squared prediction error of the regression model and minimizing

DCV prevents excess smoothing (Wood 2017, pp. 260-61).

Residual diagnostics. To assess whether our choice of the number of knots

and their locations is sufficient to provide adequate flexibility, we fit cubic

regression splines to the estimated residuals. To detect any remaining structure
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that could be explained by expanding the number of knots in the original

regression, we set the number of knots in these diagnostic regressions to K =

29, see Wood (2017, p. 343). Figures B1 and B2 show the ask and, respectively,

sale price residuals fitted to the predicted price, age, floor and plot area.

[Figure B1 about here.]

[Figure B2 about here.]

For both sets of residuals, the fitted curves are (almost always) straight hori-

zontal lines. The bumps in the smoothed ask price residuals can be explained

by IS24 customers who tend to report rounded values for house characteristics;

see also the kernel density estimates in Figure 2 in the main paper. This arte-

fact of the ask data is still visible after setting the number of knots to K = 43

in the ask price regression (not reported). Moreover, the estimated functions

f̂j(·), again using K = 43, are comparable to those in Figure 5 in the main

paper (not reported). This is evidence that our choice of the number of knots

is sufficiently large.

C Hedonic price index

We compute the quarterly price index as

(C1) It = p̂t(x0)− p̂0(x0)

where p̂t(x0) is the imputed log price for a house with characteristics x0 and

p̂0(x0) is the imputed log price for the same house in the base quarter 0. The

price function p̂t(·) is the result of the rolling window regressions described in

6



Section 3.1 of the main paper. The continuous characteristics in the vector x0

correspond to the average quality of a detached house sold in 2011—the middle

of our sample period—as reported in Gutachterausschuss für Grundstückswerte

(2011). The discrete characteristics are set to the modal values of a detached

house sold in that year (2011). We choose the location coordinates to represent

an area in the south of Berlin—at the intersection of the districts Steglitz,

Tempelhof, and Neukölln—that has the highest number of sales in that year

(2011). Table C1 summarises x0.

[Table C1 about here.]

D Robustness checks

Sensitivity of the distribution analysis. We estimate Fj|k(p) and the

markup decomposition with a linear instead of a polynomial specification for

the quantile regressions. Linear specifications are used frequently in empirical

applications, as they are often less prone to omitted variables bias than more

flexible specifications (Cropper et al. 1988, Kuminoff et al. 2010). Shimizu

et al. (2016), in particular, use a linear specification in their analysis of ask

and sale data distributions.

Figure D1 shows Q-Q plots for the empirical price distribution (EDF) and

F̂j|k(p), the latter estimated with a linear specification for the quantile regres-

sions. The Q-Q plots are similar to those in Figure 4 of the main paper, where

F̂j|k(p) is estimated with a polynomial specification for the quantile regressions.

[Figure D1 about here.]
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Table D1 reports the markup decomposition when the quantile regressions have

a linear specification. The magnitudes of estimated markups and contributions

of characteristics and implicit prices at the different quantiles are similar to

those reported in Table 4 in the main paper.

[Table D1 about here.]

However, different to the results reported in the main paper, the contribution

of implicit prices is always significant the 5% level. The decomposition results

reported in the main paper are thus conservative.

WTP estimated for subperiods. The individual WTP in the main pa-

per are computed from the hedonic regression fitted to the full sample. This

assumes that the hedonic pricing function is stable over time. To examine

whether this is sensible, we estimate the hedonic regressions of Eq. 6 in the

main paper separately for non-overlapping subperiod partitions of the full sam-

ple: 2007-08, 2009-10, 2011-12, and 2013-15. Once estimated, we compute the

individual WTP for the observations in the partition using the formulas for

the summands in Eq.9 and Eq.10. This leads to N individual WTP estimates

in total.

[Table D2 about here.]

Panel A of Table D2 reports the resulting WTP estimates for house character-

istics. The WTP point estimates are similar to those in Table 5 in the main

paper. The WTP for age remains statistically insignificant when estimated

with the ask data. This—implausible—result is thus not an artefact of the

choice of sample. The ratios of the WTP estimates from ask and sale data are
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1.53 for the floor and 1.49 for the plot area when subperiods are used, only

slightly different from 1.58 and 1.47 when the full sample is used. The ratios

of the WTP estimated with ask to those estimated with sale data for each of

the subperiods are similar to the WTP ratios for the floor and the plot area

from Table 5 in the main paper. The main difference between Table D2 and

Table 5 in the main paper are the much higher standard errors in the former,

which indicates the price that has to be paid for more flexibility.

Panel B of Table D2 reports the WTP estimates of the noise level when the

individual WTP is estimated separately for subperiods. The resulting WTP

estimates are again similar to those reported in the main paper, see Table 6.

However, the estimation over subperiods comes with much higher standard

errors.

Imputation of exterior floor area. In the main paper, we use a constant

conversion factor to obtain the exterior floor area (FA) from the interior area

(IA) for observations in the ask data. A constant factor could introduce mea-

surement error. To examine this, we use a different imputation method and

fit

(D1) ln

(
FA

IA

)
= γ0 + γ1SEMI + γ2TERRACED + γ3AGE + ε

The regression relates the log ratio of the two areas to building characteristics

that are observed in both data sets, which is necessary for the imputation.

We fit Eq. D1 to a sample of 1,513 observations in the sale data that report

both area characteristics. Table D3 gives summary statistics for this sample.

Compared to the full sample—see Table 2 in the main paper—the sample

is selective, as the observations have buildings that are on average younger,

smaller, and more often semi-detached.
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[Table D3 about here.]

Table D4 shows that the fit of the regression has a very small explanatory

power and that age is the only characteristic that has a statistically significant

coefficient estimate.

[Table D4 about here.]

At the average age among all sales, the estimated conversion function results

in a factor of 1.11, smaller than the constant conversion factor of 1.25 that is

suggested by the GAA. If we look at the correlations between the individual

imputations and the actual FA, however, then these are nearly identical: ρ̂ =

0.715 for the estimated conversion function and ρ̂ = 0.714 for the constant

conversion factor. This does not indicate that the constant conversion factor is

inferior. Indeed, the correlation between the individual imputations conducted

with the two different methods is nearly perfect with ρ̂ = 0.999.

Automated valuation using a parametric model. We assess whether

a parametric model for the hedonic regressions would improve the predictive

accuracy of valuations compared to those of the semiparametric additive model

of Eq. 6 from the main paper. We use

(D2) p = zγ+f1(AGE;β1)+f2(FA;β2)+f3(PA;β3)+f4(LAT,LON ;β4)+ε

in the rolling window regressions, where fj(·) is a dj’th degree polynomial in

continuous variable j, dj ∈ {1, 2 . . . , 7}, and βj is a vector of coefficients. The

vector z collects again all dummy variables. All variables are defined as in the

main paper. For each training sample, we select d = {d1, d2, d3, d4} with

(D3) d̂ = arg max
d

[
1−

∑N
i=1 (pi − p̂−i)∑N
i=1 (pi − p̄)

]
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where p̂−i is the leave-one-out estimator for observation i. We calculate the

predictive residuals (pi − p̂−i) from the ordinary least squares residuals and

diagonal elements of the hat matrix (Myers 1990, pp. 172-73).

Table D5 gives performance measures for the out-of-sample predictions

from the parametric regressions fitted separately to ask and sale data. Ask

data lead to prediction errors that are severely biased and significantly more

dispersed than prediction errors from sale data. This corresponds to what we

find in the main paper.

[Table D5 about here.]

Close comparison of Table D5 and Table 7 from the main paper shows that

the performance of the parametric model is inferior, irrespective whether the

loss function is the L1 or L2 norm. This is evidence that our semiparametric

model approximates the (unknown) hedonic price function better than the

parametric polynomial model.

E Software packages

We implement the stochastic dominance tests and quantile markup decompo-

sition with the user-written Stata function cdeco. The code can be installed

from https://sites.google.com/site/blaisemelly/. The site also pro-

vides R code for counterfactual quantile decomposition. To estimate the semi-

paramteric regression models we employ the gam() function from the R package

mgcv, see https://cran.r-project.org/web/packages/mgcv/index.html.

Wood (2017) provides an excellent introduction to generalized additive mod-

els and the mgcv package.

11

https://sites.google.com/site/blaisemelly/home/computer-programs/inference-on-counterfactual-distributions
https://cran.r-project.org/web/packages/mgcv/index.html 


References

Chernozhukov, V., Fernandez-Val, I. and Mellie, B.: 2013, Inference on coun-

terfactual distributions, Econometrica 81, 2205–2268.

Cropper, M. L., Deck, L. B. and McConnel, K. E.: 1988, On the choice of func-

tional form for hedonic price functions, Review of Economic and Statistics

70, 668–675.
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Table A1: Bounds for data cleaning. Reports lower and upper bounds used for
data cleaning procedure. Floor and plot area are in sqm. Source: Gutachterauss-

chuss (2011, 2012, 2013, 2014, 2015).

Detached Plot area Floor area Price per sqm

West, vintage

< 1949 400 1500 50 650 650 3530

≥ 1949 400 1500 50 625 780 2990

East, vintage

< 1949 400 1500 50 510 410 2630

≥ 1949 400 1495 50 440 910 3185

Semi-detached

West, vintage

< 1949 215 700 80 455 665 3655

≥ 1949 175 700 65 360 1005 3055

East, vintage

< 1949 230 700 40 330 430 2790

≥ 1949 190 700 60 210 1005 3350

Terraced houses

West, vintage

< 1949 130 695 65 470 720 3512

≥ 1949 115 700 75 335 895 3160

East, vintage

< 1949 115 695 60 285 495 2085

≥ 1949 100 665 65 285 1095 2695
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Table C1: Characteristics of reference house. Reports characteristics of ref-
erence house used to impute hedonic price index. Floor and plot area are in sqm.

Latitude and longitude are the Universal Transverse Mercator (UTM) coordinates
for the subway station U-Bahnhof Alt-Mariendorf.

Panel A. Continuous characteristics

Age 20

Floor area 175

Plot area 650

Latitude 5810732

Longitude 392131.1

Panel B. Discrete characteristics

Listed building No

Prefabricated No

Converted attic No

Swimming pool No

Flat roof No

No basement No

Backland development No

Lake/River access No

Condition of building Average

Neighborhood amenity rating Average

Buyer Private person

Seller Private person
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Table D1: Alternative decomposition of markups. Shows decomposition of
the ask and sale price distributions when a linear model is used for the quantile

regressions of p on the core characteristics. Standard errors for the mean (quantile)
decomposition are computed using the Huber-White covariance estimator (boot-
strapped interquartile range of F̂j|k(p)). Pointwise confidence intervals use criti-

cal values from N(0, 1). Uniform confidence bands use empirical quantile of boot-
strapped KS maximal t-statistic, see Chernozhukov et al. (2013, p. 2222). The

number of bootstrap replications is 200. The confidence level is set to 0.95

Estimated Standard Pointwise Uniform
Effect Error Conf. Interv. Conf. Bands

Panel A. Markup

Mean 0.234 0.004 0.225 0.242
Quantile

0.1 0.262 0.005 0.252 0.273 0.248 0.277
0.2 0.219 0.004 0.210 0.227 0.208 0.230

0.3 0.196 0.004 0.189 0.204 0.186 0.207

0.4 0.184 0.004 0.176 0.192 0.174 0.194
0.5 0.178 0.004 0.170 0.185 0.167 0.188

0.6 0.178 0.004 0.169 0.186 0.167 0.189
0.7 0.187 0.005 0.177 0.196 0.174 0.199

0.8 0.211 0.006 0.200 0.222 0.196 0.226
0.9 0.276 0.008 0.260 0.291 0.255 0.296

Panel B. Characteristics

Mean 0.219 0.005 0.210 0.228
Quantile

0.1 0.169 0.003 0.162 0.176 0.160 0.177

0.2 0.150 0.003 0.144 0.156 0.142 0.157
0.3 0.139 0.003 0.134 0.145 0.132 0.147

0.4 0.135 0.003 0.129 0.140 0.128 0.142
0.5 0.133 0.003 0.127 0.139 0.126 0.140

0.6 0.138 0.003 0.132 0.144 0.130 0.146
0.7 0.152 0.004 0.145 0.159 0.143 0.161

0.8 0.180 0.004 0.172 0.189 0.169 0.191

0.9 0.250 0.006 0.238 0.261 0.235 0.265

Panel C. Implicit prices

Mean 0.015 0.004 0.007 0.0228

Quantile
0.1 0.093 0.005 0.083 0.104 0.079 0.108
0.2 0.069 0.004 0.061 0.077 0.059 0.080
0.3 0.057 0.003 0.050 0.063 0.048 0.066
0.4 0.049 0.003 0.043 0.055 0.041 0.057
0.5 0.044 0.003 0.039 0.050 0.037 0.052

0.6 0.040 0.003 0.034 0.046 0.032 0.048

0.7 0.035 0.003 0.029 0.041 0.026 0.044
0.8 0.031 0.004 0.023 0.038 0.020 0.041

0.9 0.026 0.005 0.016 0.036 0.012 0.039
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Table D2: Willingness to pay based on subperiod estimates. Panel A
reports WTP estimates computed with Eq. 9 and Eq. 10 from the main paper, but

with the functions in the summands estimated separately for partitions of the full
sample. Specifications are identical to (2) and (5) from Table 5 in the main paper.
Panel B reports WTP estimates for noise levels based on regression with f5(NOI)

added. Standard errors are computed as the observation-weighted average of the
bootstrap standard errors in each subperiod. Number of bootstrap replications in

each subperiod is 200. Significant at ∗∗∗0.001 level, ∗∗0.01 level, ∗0.05 level.

Panel A. House characteristics

Ask data Sale data

WTP Std. Err. WTP Std. Err.

Age 47.48 113.31 -1361.47∗∗∗ 261.69
Floor area 1287.22∗∗∗ 16.22 842.28∗∗∗ 30.98

Plot area 1379.80∗∗∗ 15.78 951.03∗∗∗ 30.41

Detached 18359.22∗∗∗ 2968.34 6718.59 5984.40
Semi-detached 7034.18∗∗ 2346.98 3498.83 4328.99

Listed 18733.87∗ 8324.88
Prefabricated -5960.84 3467.39

Converted attic 3537.06 2501.85
Swimming pool 13633.14 10015.06

Flat roof -5511.85 3277.10

No basement -22722.32∗∗∗ 3083.81
Backland develop. -586.62 2713.06

Waterfront 65806.10∗∗∗ 13594.82
Poor condition -55056.85∗∗∗ 4747.57

Good condition 29720.73∗∗∗ 3279.17
Poor amenities -8146.89∗∗ 2992.08

Good amenities 22256.35∗∗∗ 4873.70

Excel. amenities 43445.20∗ 18400.96

Panel B. Noise levels

Noise levels -1201.20∗∗∗ 169.40 -837.07∗∗∗ 220.69

f4(LAT,LON) Yes Yes

Buyer/Seller dummies No Yes
Quarterly time dummies Yes Yes

N 59,502 12,218
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Table D3: Summary statistics for observations in sale data that report
floor and interior area. Number of observations is 1,513. Age of building at the

date of sale. Areas are in sqm.

Mean Std. Dev. Min Max

Age 22.53 29.43 0.00 100.00

Area

floor 141.76 46.29 45.00 451.00

interior 125.15 35.13 42.00 552.00

Detached 0.40

Semi-detached 0.39

Terraced house 0.19
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Table D4: Regression for area ratio. Shows OLS estimates of Eq.D1. Standard
errors are computed using the heteroscedasticity robust Huber-White covariance

estimator. Significant at ∗∗∗0.001 level, ∗∗0.01 level, ∗0.05 level.

Coef. Std. Err.

Age 0.001∗ 0.000

Semi-detached 0.022 0.015

Terraced house 0.019 0.016

Constant 0.083∗∗∗ 0.013

R2 0.004

N 1,513
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Table D5: Assessment of prediction errors from parametric hedonic re-
gression model. Shows performance statistics for 9,152 out-of-sample prediction

errors. ±10% (±25%) reports the proportion of errors which are in absolute terms
no larger than 10% (25%).

Data MSE Bias Var. Med. MAE ±10% ±25%

Ask 0.089 -0.024 0.088 -0.012 0.231 0.282 0.610

Sale 0.059 0.009 0.059 0.021 0.189 0.335 0.697
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Figure B1: Residual diagnostics for ask data. Residuals come from specifica-

tion (2) in Table 5 of the main paper. Solid red line is fitted cubic regression spline.
in the ask price regression Dotted red lines are 0.95 pointwise confidence intervals.
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Figure B2: Residual diagnostics for sale data. Residuals come from speci-

fication (5) in Table 5 of the main paper. Solid red line is fitted cubic regression
spline. The number of knots is set to K = 29. Dotted red lines are 0.95 pointwise
confidence intervals.
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Figure D1: Q-Q plots for price distributions, linear specification. Upper-
left (right) panel compares F̂a|a (F̂s|s) to the EDF of the ask (sale) price, where F̂j|k
is estimated from Eq. 4 in the main paper. Lower-left (right) panel compares F̂a|a
(F̂a|s) to F̂a|s (F̂s|s). Solid black line is the 45 degree line
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