Supplementary information

Unbiased estimation of the OLS covariance matrix when the errors are clustered

Empirical Economics

Tom Boot, Gianmaria Niccodemi, and Tom Wansbeek (t.j.wansbeek@rug.nl)

Appendix A: Derivation of the unbiased variance estimators

Equicorrelated errors

In this section we consider the case where the errors are equicorrelated within clusters, so

$$
\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}_{n}+\tau^{2} \mathbf{B B}^{\prime}
$$

hence the design matrix for this case is

$$
\mathbf{D}=\left(\operatorname{vec} \mathbf{I}_{n}, \operatorname{vec} \mathbf{B B} \mathbf{B}^{\prime}\right)
$$

Let

$$
\begin{aligned}
s & \equiv \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}} \\
\dot{s} & \equiv \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}} \\
\breve{s} & \equiv \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \boldsymbol{\Delta}_{n} \tilde{\mathbf{X}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbf{D}^{\prime} \mathbf{D} & =\left(\begin{array}{cc}
\operatorname{tr} \mathbf{I}_{n} & \operatorname{tr} \mathbf{B}^{\prime} \mathbf{B} \\
\operatorname{tr} \mathbf{B}^{\prime} \mathbf{B} & \operatorname{tr}\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
n & n \\
n & \ddot{n}
\end{array}\right) \\
\mathbf{D}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{P}\right) \mathbf{D} & =\left(\begin{array}{cc}
\operatorname{tr} \mathbf{P} & \operatorname{tr} \mathbf{B}^{\prime} \mathbf{P B} \\
\operatorname{tr} \mathbf{B}^{\prime} \mathbf{P B} & \operatorname{tr} \mathbf{B}^{\prime} \mathbf{B} \mathbf{B}^{\prime} \mathbf{P B}
\end{array}\right) \\
& =\left(\begin{array}{cc}
k & s \\
s & \breve{s}
\end{array}\right) \\
\mathbf{D}^{\prime}(\mathbf{P} \otimes \mathbf{P}) \mathbf{D} & =\left(\begin{array}{cc}
\operatorname{tr} \mathbf{P} & \operatorname{tr} \mathbf{B}^{\prime} \mathbf{P B} \\
\operatorname{tr} \mathbf{B}^{\prime} \mathbf{P B} & \operatorname{tr}\left(\mathbf{B}^{\prime} \mathbf{P B}\right)^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
k & s \\
s & \dot{s}
\end{array}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\boldsymbol{\Psi} & \equiv \mathbf{D}^{\prime}(\mathbf{M} \otimes \mathbf{M}) \mathbf{D} \\
& =\left(\begin{array}{cc}
n-k & n-s \\
n-s & \ddot{n}-2 \breve{s}+\dot{s}
\end{array}\right) .
\end{aligned}
$$

So for the current case (2) becomes

$$
\begin{aligned}
\hat{\mathbf{v}} & =\mathbf{R}^{\prime}\left[\mathbf{D}^{\prime}(\mathbf{M} \otimes \mathbf{M}) \mathbf{D}\right]^{-1} \mathbf{D}^{\prime}(\hat{\varepsilon} \otimes \hat{\varepsilon}) \\
& \left.=\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}\right)^{-1}(\mathbf{X} \otimes \mathbf{X})^{\prime}\left(\operatorname{vec} \mathbf{I}_{n}, \operatorname{vec} \mathbf{B B} \mathbf{B}^{\prime}\right) \boldsymbol{\Psi}^{-1}\left(\operatorname{vec} \mathbf{I}_{n}, \operatorname{vec} \mathbf{B B} B^{\prime}\right)\right)^{\prime}(\hat{\varepsilon} \otimes \hat{\varepsilon}) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\operatorname{vec} \mathbf{X}^{\prime} \mathbf{X}, \operatorname{vec} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right) \boldsymbol{\Psi}^{-1}\left(\hat{\varepsilon}^{\prime} \hat{\varepsilon}, \tilde{\hat{\varepsilon}}^{\prime} \tilde{\hat{\varepsilon}}^{\prime}\right)^{\prime} .
\end{aligned}
$$

Cluster-specific parameters

We now let σ^{2} and τ^{2} vary over clusters and the parameter vector becomes

$$
\boldsymbol{\lambda}=\left(\sigma_{1}^{2}, \ldots, \sigma_{C}^{2}, \tau_{1}^{2}, \ldots, \tau_{C}^{2}\right)^{\prime}
$$

So now

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\sum_{c}\left(\sigma_{c}^{2} \mathbf{G}_{c} \mathbf{G}_{c}^{\prime}+\tau_{c}^{2} \mathbf{b}_{c} \mathbf{b}_{c}^{\prime}\right) \\
\mathbf{D} & =\sum_{c}\left(\mathbf{g}_{c} \mathbf{e}_{c}^{\prime}, \mathbf{h}_{c} \mathbf{e}_{c}^{\prime}\right),
\end{aligned}
$$

with

$$
\begin{aligned}
\mathbf{g}_{c} & \equiv \operatorname{vec} \mathbf{G}_{c} \mathbf{G}_{c}^{\prime} \\
\mathbf{h}_{c} & \equiv \mathbf{b}_{c} \otimes \mathbf{b}_{c},
\end{aligned}
$$

with properties

$$
\begin{aligned}
\mathbf{g}_{c}^{\prime} \mathbf{g}_{c} & =n_{c} \\
\mathbf{h}_{c}^{\prime} \mathbf{h}_{c} & =n_{c}^{2} \\
\mathbf{g}_{c}^{\prime} \mathbf{h}_{c} & =n_{c},
\end{aligned}
$$

for $c=1, \ldots, C$, while $\mathbf{g}_{c}^{\prime} \mathbf{c}_{d}=\mathbf{h}_{c}^{\prime} \mathbf{h}_{d}=\mathbf{c}_{g}^{\prime} \mathbf{h}_{d}=0$ for $d \neq c$, and

$$
\begin{aligned}
(\mathbf{X} \otimes \mathbf{X})^{\prime} \mathbf{g}_{c} & =\operatorname{vec} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c} \\
(\mathbf{X} \otimes \mathbf{X})^{\prime} \mathbf{h}_{c} & =\tilde{\mathbf{x}}_{c} \otimes \tilde{\mathbf{x}}_{c} \\
(\hat{\varepsilon} \otimes \hat{\varepsilon})^{\prime} \mathbf{g}_{c} & =\hat{\varepsilon}_{c}^{\prime} \hat{\varepsilon}_{c} \\
(\hat{\varepsilon} \otimes \hat{\varepsilon})^{\prime} \mathbf{h}_{c} & =\hat{\tilde{\varepsilon}}_{c}^{2},
\end{aligned}
$$

with ε_{c} the residuals of cluster c and $\overline{\tilde{\varepsilon}}_{c}$ their sum over the observations in the cluster, this all for $c=1, \ldots, C$. Further

$$
\begin{aligned}
\mathbf{g}_{c}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{P}\right) \mathbf{g}_{c} & =\left(\operatorname{vec}_{\mathbf{G}_{c}} \mathbf{G}_{c}^{\prime}\right)^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\operatorname{vec} \mathbf{G}_{c} \mathbf{G}_{c}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathbf{G}_{c} \mathbf{G}_{c}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{G}_{c} \mathbf{G}_{c}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c} \\
& \equiv s_{c} \\
\mathbf{h}_{c}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{P}\right) \mathbf{h}_{c} & =\left(\mathbf{b}_{c} \otimes \mathbf{b}_{c}\right)^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\mathbf{b}_{c} \otimes \mathbf{b}_{c}\right) \\
& =n_{c} \tilde{\mathbf{x}}_{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{x}}_{c} \\
& \equiv n_{c} \tilde{s}_{c} \\
\mathbf{g}_{c}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{P}\right) \mathbf{h}_{c} & =\left(\operatorname{vec}_{c} \mathbf{G}_{c}^{\prime}\right)^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\mathbf{b}_{c} \otimes \mathbf{b}_{c}\right) \\
& =\operatorname{tr}\left(\mathbf{G}_{c} \mathbf{G}_{c}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{b}_{c} \mathbf{b}_{c}^{\prime}\right) \\
& =\tilde{\mathbf{x}}_{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{x}}_{c} \\
& =\tilde{s}_{c},
\end{aligned}
$$

while it appears directly from the derivations that the terms across clusters are zero. This does not hold for the terms involving $\mathbf{P} \otimes \mathbf{P}$. There we have

$$
\begin{aligned}
\mathbf{g}_{c}^{\prime}(\mathbf{P} \otimes \mathbf{P}) \mathbf{g}_{d} & =\left(\operatorname{vec}_{c} \mathbf{G}_{c}^{\prime}\right)^{\prime}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \otimes \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\operatorname{vec} \mathbf{G}_{d} \mathbf{G}_{d}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathbf{G}_{c} \mathbf{G}_{c}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{G}_{c} \mathbf{G}_{c}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{d}^{\prime} \mathbf{X}_{d} \\
& \equiv a_{c d} \\
\mathbf{h}_{c}^{\prime}(\mathbf{P} \otimes \mathbf{P}) \mathbf{h}_{d} & =\left(\mathbf{b}_{c} \otimes \mathbf{b}_{c}\right)^{\prime}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \otimes \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\mathbf{b}_{d} \otimes \mathbf{b}_{d}\right) \\
& =\left(\tilde{\mathbf{x}}_{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{x}}_{d}\right)^{2} \\
& \equiv q_{c d} \\
\mathbf{g}_{c}^{\prime}(\mathbf{P} \otimes \mathbf{P}) \mathbf{h}_{d} & =\left(\operatorname{vec} \mathbf{G}_{c} \mathbf{G}_{c}^{\prime}\right)^{\prime}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \otimes \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\mathbf{b}_{d} \otimes \mathbf{b}_{d}\right) \\
& =\operatorname{tr}\left(\mathbf{G}_{c} \mathbf{G}_{c}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{b}_{c} \mathbf{b}_{c} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \\
& =\tilde{\mathbf{x}}_{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{x}}_{d} \\
& \equiv \ell_{c d}
\end{aligned}
$$

We let $\boldsymbol{\Delta}_{s}$ and $\boldsymbol{\Delta}_{\tilde{s}}$ be the diagonal matrices containing the s_{c} and \tilde{s}_{c} and collect the $a_{c d}, \ell_{c d}$ and $q_{c d}$ in the matrices \mathbf{A}, \mathbf{L} and \mathbf{Q}, respectively. Then we obtain

$$
\begin{aligned}
\mathbf{D}^{\prime} \mathbf{D} & =\left(\begin{array}{ll}
\boldsymbol{\Delta}_{n} & \boldsymbol{\Delta}_{n} \\
\boldsymbol{\Delta}_{n} & \Delta_{n}^{2}
\end{array}\right) \\
\mathbf{D}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{P}\right) \mathbf{D} & =\left(\begin{array}{cc}
\boldsymbol{\Delta}_{s} & \boldsymbol{\Delta}_{\tilde{s}} \\
\boldsymbol{\Delta}_{\tilde{s}} & \boldsymbol{\Delta}_{n} \boldsymbol{\Delta}_{\tilde{s}}
\end{array}\right) \\
\mathbf{D}^{\prime}(\mathbf{P} \otimes \mathbf{P}) \mathbf{D} & =\left(\begin{array}{cc}
\mathbf{A} & \mathbf{L} \\
\mathbf{L}^{\prime} & \mathbf{Q}
\end{array}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\boldsymbol{\Phi} & =\mathbf{D}^{\prime}(\mathbf{M} \otimes \mathbf{M}) \mathbf{D} \\
& =\left(\begin{array}{cc}
\Delta_{n}-2 \Delta_{s}+\mathbf{A} & \Delta_{n}-2 \Delta_{\tilde{s}}+\mathbf{L} \\
\boldsymbol{\Delta}_{n}-2 \Delta_{\tilde{s}}+\mathbf{L}^{\prime} & \Delta_{n}^{2}-2 \Delta_{n} \Delta_{\tilde{s}}+\mathbf{Q}
\end{array}\right)
\end{aligned}
$$

Combining the various elements, our unbiased estimator of the covariance matrix of the estimated regression coefficients is

$$
\begin{aligned}
\hat{\mathbf{v}} & =\mathbf{R}^{\prime}\left[\mathbf{D}^{\prime}(\mathbf{M} \otimes \mathbf{M}) \mathbf{D}\right]^{-1} \mathbf{D}^{\prime}(\hat{\varepsilon} \otimes \hat{\varepsilon}) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}\right)^{-1}(\mathbf{X} \otimes \mathbf{X})^{\prime} \sum_{c}\left(\mathbf{g}_{c} \mathbf{e}_{c}^{\prime}, \mathbf{h}_{c} \mathbf{e}_{c}^{\prime}\right) \boldsymbol{\Phi}^{-1} \sum_{c}\left(\mathbf{g}_{c} \mathbf{e}_{c}^{\prime}, \mathbf{h}_{c} \mathbf{e}_{c}^{\prime}\right)^{\prime}(\hat{\varepsilon} \otimes \hat{\varepsilon}) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \sum_{c}\left(\left(\operatorname{vec} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right) \mathbf{e}_{c}^{\prime},\left(\tilde{\mathbf{x}}_{c} \otimes \tilde{\mathbf{x}}_{c}\right) \mathbf{e}_{c}^{\prime}\right) \boldsymbol{\Phi}^{-1} \sum_{c}\left(\mathbf{e}_{c} \hat{\varepsilon}_{c}^{\prime} \hat{\varepsilon}_{c}, \mathbf{e}_{c} \tilde{\hat{\varepsilon}}_{c}^{2}\right)^{\prime}
\end{aligned}
$$

Unrestricted error correlation within clusters

We now consider the case where the errors correlate freely within clusters, in a way that differs over clusters. The structure of $\boldsymbol{\Sigma}$ thus is

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\operatorname{diag} \boldsymbol{\Lambda}_{c} \\
& =\sum_{c} \mathbf{G}_{c} \boldsymbol{\Lambda}_{c} \mathbf{G}_{c}^{\prime} .
\end{aligned}
$$

This is a quite general structure, involving many parameters. It may even seem too generous in parameters but it has the merit to encompass all kinds of generalizations of the cluster-specific structure of Section 3.2 like factor structures. Since

$$
\operatorname{vec} \boldsymbol{\Sigma}=\sum_{c}\left(\mathbf{G}_{c} \otimes \mathbf{G}_{c}\right) \operatorname{vec} \boldsymbol{\Lambda}_{c},
$$

the design matrix now is, using the $\dot{\otimes}$ notation introduced at the end of Section 2,

$$
\begin{aligned}
\mathbf{D} & =\left(\mathbf{G}_{1} \otimes \mathbf{G}_{1}, \ldots, \mathbf{G}_{C} \otimes \mathbf{G}_{C}\right) \\
& =\sum_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes} \mathbf{G}_{c} \otimes \mathbf{G}_{c} .
\end{aligned}
$$

Then, with

$$
\mathbf{P}_{c} \equiv \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime}
$$

we obtain

$$
\begin{aligned}
\mathbf{D}^{\prime} \mathbf{D} & =\sum_{c} \mathbf{e}_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes} \mathbf{I}_{c} \otimes \mathbf{I}_{c} \\
\mathbf{D}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{P}\right) \mathbf{D} & =\left(\sum_{c} \mathbf{e}_{c} \dot{\otimes} \mathbf{G}_{c}^{\prime} \otimes \mathbf{G}_{c}^{\prime}\right)\left(\mathbf{I}_{n} \otimes \mathbf{P}\right)\left(\sum_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes} \mathbf{G}_{c} \otimes \mathbf{G}_{c}\right) \\
& =\sum \mathbf{e}_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes} \mathbf{I}_{c} \otimes \mathbf{P}_{c} \\
\mathbf{D}^{\prime}\left(\mathbf{P} \otimes \mathbf{I}_{n}\right) \mathbf{D} & =\sum \mathbf{e}_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes} \mathbf{P}_{c} \otimes \mathbf{I}_{c} .
\end{aligned}
$$

In the previous two cases we had a limited amount of parameters. But now we are faced with a possibly very large number of parameters, so we use (3) rather than (2).

Elaborating the expressions for \mathbf{A} and \mathbf{F} in (3) for the current case we get

$$
\begin{aligned}
\mathbf{A} & =\mathbf{D}^{\prime} \mathbf{D}-\mathbf{D}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{P}\right) \mathbf{D}-\mathbf{D}^{\prime}\left(\mathbf{P} \otimes \mathbf{I}_{n}\right) \mathbf{D} \\
& =\sum_{c} \mathbf{e}_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes}\left(\mathbf{I}_{c} \otimes \mathbf{I}_{c}-\mathbf{I}_{c} \otimes \mathbf{P}_{c}-\mathbf{P}_{c} \otimes \mathbf{I}_{c}\right) \\
& \equiv \sum_{c} \mathbf{e}_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes} \mathbf{A}_{c} \\
\mathbf{F} & =\mathbf{D}^{\prime}(\mathbf{X} \otimes \mathbf{X}) \\
& =\sum_{c} \mathbf{e}_{c} \dot{\otimes} \mathbf{X}_{c} \otimes \mathbf{X}_{c} \\
& \equiv \sum_{c} \mathbf{e}_{c} \dot{\otimes} \mathbf{F}_{c},
\end{aligned}
$$

with \mathbf{A}_{c} and \mathbf{F}_{c} implicitly defined. Then

$$
\begin{aligned}
\mathbf{F}_{c}^{\prime} \mathbf{A}_{c} & =\mathbf{X}_{c}^{\prime} \otimes \mathbf{X}_{c}^{\prime}-\mathbf{X}_{c}^{\prime} \otimes \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime}-\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime} \otimes \mathbf{X}_{c}^{\prime} \\
& =\left(\mathbf{I}_{k^{2}}-\mathbf{I}_{k} \otimes \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \otimes \mathbf{I}_{k}\right) \mathbf{F}_{c}^{\prime} \\
& \equiv \mathbf{S}_{c} \mathbf{F}_{c}^{\prime},
\end{aligned}
$$

with \mathbf{S}_{c} of order $k^{2} \times k^{2}$ implicitly defined, so $\mathbf{F}_{c}^{\prime} \mathbf{A}_{c}^{-1}=\mathbf{S}_{c}^{-1} \mathbf{F}_{c}^{\prime}$ and

$$
\begin{aligned}
\mathbf{F}^{\prime} \mathbf{A}^{-1} \mathbf{F} & =\sum_{c} \mathbf{F}_{c}^{\prime} \mathbf{A}_{c}^{-1} \mathbf{F}_{c} \\
& =\sum_{c} \mathbf{S}_{c}^{-1}\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c} \otimes \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right) .
\end{aligned}
$$

The final expression from (3) to be elaborated is

$$
\begin{aligned}
\mathbf{F}^{\prime} \mathbf{A}^{-1} \mathbf{D}^{\prime}(\hat{\varepsilon} \otimes \hat{\varepsilon}) & =\left(\sum_{c} \mathbf{e}_{c}^{\prime} \dot{\otimes} \mathbf{S}_{c}^{-1} \mathbf{F}_{c}^{\prime}\right)\left(\sum_{c} \mathbf{e}_{c} \dot{\otimes} \mathbf{G}_{c}^{\prime} \otimes \mathbf{G}_{c}^{\prime}\right)(\hat{\varepsilon} \otimes \hat{\varepsilon}) \\
& =\sum_{c} \mathbf{S}_{c}^{-1}\left(\mathbf{X}_{c}^{\prime} \hat{\varepsilon}_{c} \otimes \mathbf{X}_{c}^{\prime} \hat{\varepsilon}_{c}\right) .
\end{aligned}
$$

Then (3) becomes

$$
\hat{\mathbf{v}}=\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}+\sum_{c} \mathbf{S}_{c}^{-1}\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c} \otimes \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)\right)^{-1} \sum_{c} \mathbf{S}_{c}^{-1}\left(\mathbf{X}_{c}^{\prime} \hat{\varepsilon}_{c} \otimes \mathbf{X}_{c}^{\prime} \hat{\varepsilon}_{c}\right)
$$

Appendix B: Degrees of freedom with random effects

In this appendix we elaborate the denominator of (19) and derive estimators for the parameters in \hat{d}_{ℓ}. We start with the former. First,

$$
\begin{equation*}
\operatorname{tr} \mathbf{A M \Sigma M A M \Sigma M}=\sigma^{4} \operatorname{tr} \mathbf{A M A M}+2 \sigma^{2} \tau^{2} \operatorname{tr} \mathbf{B}^{\prime} \mathbf{M A M A M B}+\tau^{4} \operatorname{tr}\left(\mathbf{B}^{\prime} \mathbf{M A M B}\right)^{2} \tag{1}
\end{equation*}
$$

The first term at the right-hand side was already elaborated in (18). As to the second term,

$$
\mathbf{A M A}=\sum_{c} \mathbf{G}_{c} \mathbf{A}_{c}^{2} \mathbf{G}_{c}^{\prime}-\sum_{c, d} \mathbf{G}_{c} \mathbf{A}_{c} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{d}^{\prime} \mathbf{A}_{d} \mathbf{G}_{d}^{\prime}
$$

so

$$
\begin{aligned}
\operatorname{tr} \mathbf{B}^{\prime} \mathbf{M A M A M B}= & \operatorname{tr} \sum_{c} \mathbf{A}_{c}^{2} \mathbf{G}_{c}^{\prime} \mathbf{M B B} B^{\prime} \mathbf{M G}_{c} \\
& -\operatorname{tr} \sum_{c, d}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{d}^{\prime} \mathbf{A}_{d} \mathbf{G}_{d}^{\prime} \mathbf{M B B} B^{\prime} \mathbf{M} \mathbf{G}_{c} \mathbf{A}_{c} \mathbf{X}_{c} .
\end{aligned}
$$

From

$$
\begin{aligned}
\mathbf{G}_{c}^{\prime} \mathbf{M B} & =\mathbf{i}_{c} \mathbf{e}_{c}^{\prime}-\mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \\
& \equiv \mathbf{i}_{c} \mathbf{e}_{c}^{\prime}-\mathbf{L}_{c}
\end{aligned}
$$

we obtain

$$
\mathbf{G}_{c}^{\prime} \mathbf{M B B} \mathbf{B G}_{c}^{\prime}=\mathbf{i}_{c} \mathbf{i}_{c}^{\prime}-\mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{x}}_{c} \iota_{c}^{\prime}-\mathbf{i}_{c} \tilde{\mathbf{x}}_{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime}+\mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime}
$$

and, letting $\boldsymbol{\mu}_{c} \equiv\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime} \mathbf{A}_{c} \mathbf{i}_{c}$, we have $\operatorname{tr} \mathbf{B}^{\prime} \mathbf{M A M A M B}=T_{1}+T_{2}$, with

$$
\begin{aligned}
T_{1} & =\sum_{c} \mathbf{i}_{c}^{\prime} \mathbf{A}_{c}^{2} \mathbf{i}_{c}-2 \sum_{c} \mathbf{i}_{c}^{\prime} \mathbf{A}_{c}^{2} \mathbf{X}_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{x}}_{c}+\operatorname{tr} \sum_{c}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{c}^{\prime} \mathbf{A}_{c}^{2} \mathbf{X}_{c} \\
T_{2} & =\operatorname{tr} \sum_{c, d}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{d}^{\prime} \mathbf{A}_{d}\left(\mathbf{i}_{d} \mathbf{e}_{d}^{\prime}-\mathbf{L}_{d}\right)\left(\mathbf{e}_{c} \mathbf{i}_{c}^{\prime}-\mathbf{L}_{c}^{\prime}\right) e \mathbf{A}_{c} \mathbf{X}_{c} \\
& =\sum_{c} \boldsymbol{\mu}_{c}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\mu}_{c}-2 \sum_{c} \tilde{\mathbf{x}}_{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X} \boldsymbol{\mu}_{c}+\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X} .
\end{aligned}
$$

So far for the second term at the right-hand side of (27).
As to the third term, let $\lambda_{c} \equiv \mathbf{i}_{c}^{\prime} \mathbf{A}_{c} \mathbf{i}_{c}$ and

$$
\begin{aligned}
\mathbf{B}^{\prime} \mathbf{M A M B} & =\sum_{c}\left(\mathbf{B}^{\prime}-\tilde{\mathbf{X}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{G}_{c} \mathbf{A}_{c} \mathbf{G}_{c}^{\prime}\left(\mathbf{B}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tilde{\mathbf{X}}^{\prime}\right) \\
& =\sum_{c}\left(\lambda_{c} \mathbf{e}_{c} \mathbf{e}_{c}^{\prime}-\tilde{\mathbf{X}} \boldsymbol{\mu}_{c} \mathbf{e}_{c}^{\prime}-\mathbf{e}_{c} \boldsymbol{\mu}_{c}^{\prime} \tilde{\mathbf{X}}^{\prime}\right)+\tilde{\mathbf{X}} \mathbf{W} \tilde{\mathbf{X}}^{\prime} \\
& \equiv \mathbf{S}+\tilde{\mathbf{X}} \mathbf{W} \tilde{\mathbf{X}}^{\prime} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{tr} \mathbf{S}^{2} & =\sum_{c}\left(\lambda_{c}^{2}-4 \mathbf{e}_{c}^{\prime} \tilde{\mathbf{X}} \boldsymbol{\mu}_{c}+2 \boldsymbol{\mu}_{c}^{\prime} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}} \boldsymbol{\mu}_{c}\right)+2 \sum_{c, d} \tilde{\mathbf{x}}^{\prime} \boldsymbol{\mu}_{d} \mathbf{e}_{d}^{\prime} \tilde{\mathbf{x}}^{\prime} \boldsymbol{\mu}_{c} \\
\operatorname{tr} \mathbf{S} \tilde{\mathbf{X}} \mathbf{W} \tilde{\mathbf{X}}^{\prime} & =\sum_{c}\left(\lambda_{c} \tilde{\mathbf{x}}_{c}^{\prime} \mathbf{W} \tilde{\mathbf{x}}_{c}-2 \tilde{\mathbf{x}}_{c}^{\prime} \mathbf{W} \tilde{\mathbf{X}} \boldsymbol{\mu}_{c}\right) \\
\operatorname{tr}\left(\tilde{\mathbf{X}} \mathbf{W} \tilde{\mathbf{X}}^{\prime}\right)^{2} & =\operatorname{tr}\left(\mathbf{W} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right)^{2} .
\end{aligned}
$$

Combining these elements we obtain an expression for $\operatorname{tr}\left(\mathbf{B}^{\prime} \mathbf{M A M B}\right)^{2}$.
In the spirit of the "unbiased" theme of this paper, we estimate d_{ℓ} in (15) by using unbiased estimators for $\sigma^{4}, \sigma^{2} \tau^{2}$ and τ^{4}, which we will now derive. With the subscript to $\mathbf{m}_{a b}$ denoting an expression with $a \mathbf{M s}$ and $b \mathbf{B B}^{\prime}$ s, there holds

$$
\begin{aligned}
\mathrm{E}(\hat{\varepsilon} * \hat{\varepsilon}) & =\mathbf{H}^{\prime} \mathrm{E}(\hat{\varepsilon} \otimes \hat{\varepsilon}) \\
& =\mathbf{H}^{\prime}(\mathbf{M} \otimes \mathbf{M}) \operatorname{vec}\left(\sigma^{2} \mathbf{I}_{n}+\tau^{2} \mathbf{B} B^{\prime}\right) \\
& =\sigma^{2} \mathbf{H}^{\prime} \operatorname{vec} \mathbf{M}+\tau^{2} \mathbf{H}^{\prime} \operatorname{vec} \mathbf{M B B} B^{\prime} \mathbf{M} \\
& \equiv \sigma^{2} \mathbf{m}_{10}+\tau^{2} \mathbf{m}_{21} .
\end{aligned}
$$

We additionally have

$$
\begin{aligned}
\mathrm{E}\left(\hat{\varepsilon} * \mathbf{B B}^{\prime} \hat{\varepsilon}\right) & =\mathbf{H}^{\prime} \mathrm{E}\left(\hat{\varepsilon} \otimes \mathbf{B B}^{\prime} \hat{\varepsilon}\right) \\
& =\mathbf{H}^{\prime}\left(\mathbf{M} \otimes \mathbf{B B}^{\prime} \mathbf{M}\right) \operatorname{vec}\left(\sigma^{2} \mathbf{I}_{n}+\tau^{2} \mathbf{B B}^{\prime}\right) \\
& =\sigma^{2} \mathbf{H}^{\prime} \operatorname{vec} \mathbf{B B}^{\prime} \mathbf{M}+\tau^{2} \mathbf{H}^{\prime} \operatorname{vec} \mathbf{B B}^{\prime} \mathbf{M B B}^{\prime} \mathbf{M} \\
& \equiv \sigma^{2} \mathbf{m}_{11}+\tau^{2} \mathbf{m}_{22}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{E}\left(\mathbf{B B}^{\prime} \hat{\varepsilon} * \mathbf{B B}^{\prime} \hat{\varepsilon}\right) & =\mathbf{H}^{\prime} \mathrm{E}\left(\mathbf{B B}^{\prime} \hat{\varepsilon} \otimes \mathbf{B B}^{\prime} \hat{\varepsilon}\right) \\
& =\mathbf{H}^{\prime}\left(\mathbf{B B}^{\prime} \mathbf{M} \otimes \mathbf{B B}^{\prime} \mathbf{M}\right) \operatorname{vec}\left(\sigma^{2} \mathbf{I}_{n}+\tau^{2} \mathbf{B B}^{\prime}\right) \\
& =\sigma^{2} \mathbf{H}^{\prime} \operatorname{vec}^{\prime} \mathbf{B B}^{\prime} \mathbf{M B B} B^{\prime}+\tau^{2} \mathbf{H}^{\prime} v e c \mathbf{B B}^{\prime} \mathbf{M} \mathbf{B B}^{\prime} \mathbf{M B B}^{\prime} \\
& \equiv \sigma^{2} \mathbf{m}_{12}+\tau^{2} \mathbf{m}_{23} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbf{i}_{n}^{\prime} \mathrm{E}(\hat{\varepsilon} * \hat{\varepsilon} * \hat{\varepsilon} * \hat{\varepsilon})= & 3 \mathbf{i}_{n}^{\prime}\left(\left(\sigma^{2} \mathbf{m}_{10}+\tau^{2} \mathbf{m}_{21}\right) *\left(\sigma^{2} \mathbf{m}_{10}+\tau^{2} \mathbf{m}_{21}\right)\right) \\
\mathbf{i}_{n}^{\prime} \mathrm{E}\left(\hat{\varepsilon} * \hat{\varepsilon} * \mathbf{B} \mathbf{B}^{\prime} \hat{\varepsilon} * \mathbf{B} \mathbf{B}^{\prime} \hat{\varepsilon}\right)= & \mathbf{i}_{n}^{\prime}\left(\left(\sigma^{2} \mathbf{m}_{10}+\tau^{2} \mathbf{m}_{21}\right) *\left(\sigma^{2} \mathbf{m}_{12}+\tau^{2} \mathbf{m}_{23}\right)\right. \\
& \left.+2\left(\sigma^{2} \mathbf{m}_{11}+\tau^{2} \mathbf{m}_{22}\right) *\left(\sigma^{2} \mathbf{m}_{11}+\tau^{2} \mathbf{m}_{22}\right)\right) \\
\mathbf{i}_{n}^{\prime} \mathrm{E}\left(\mathbf{B B}^{\prime} \hat{\varepsilon} * \mathbf{B B}^{\prime} \hat{\varepsilon} * \mathbf{B B}^{\prime} \hat{\varepsilon} * \mathbf{B B}^{\prime} \hat{\varepsilon}\right)= & 3 \mathbf{i}_{n}^{\prime}\left(\left(\sigma^{2} \mathbf{m}_{12}+\tau^{2} \mathbf{m}_{23}\right) *\left(\sigma^{2} \mathbf{m}_{12}+\tau^{2} \mathbf{m}_{23}\right)\right) .
\end{aligned}
$$

Solving the sample counterpart of this system readily leads to unbiased estimators for the three parameters,

$$
\left(\begin{array}{ccc}
3 \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{10} * \mathbf{m}_{10}\right) & 6 \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{10} * \mathbf{m}_{21}\right) & 3 \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{21} * \mathbf{m}_{21}\right) \\
x & y & z \\
3 \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{12} * \mathbf{m}_{12}\right) & 6 \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{12} * \mathbf{m}_{23}\right) & 3 \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{23} * \mathbf{m}_{23}\right)
\end{array}\right)\left(\begin{array}{c}
\widehat{\sigma^{4}} \\
\widehat{\sigma^{2} \tau^{2}} \\
\widehat{\tau^{4}}
\end{array}\right)=\left(\begin{array}{c}
\sum_{i} \hat{\varepsilon}_{i}^{4} \\
\sum_{i} \hat{\varepsilon}_{i}^{2} \tilde{\varepsilon}_{i}^{2} \\
\sum_{i} \tilde{\varepsilon}_{i}^{4}
\end{array}\right),
$$

with

$$
\begin{aligned}
x & \equiv \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{10} * \mathbf{m}_{12}+2 \mathbf{m}_{11} * \mathbf{m}_{11}\right) \\
y & \equiv \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{10} * \mathbf{m}_{23}+\mathbf{m}_{21} * \mathbf{m}_{12}+4 \mathbf{m}_{22} * \mathbf{m}_{11}\right) \\
z & \equiv \mathbf{i}_{n}^{\prime}\left(\mathbf{m}_{21} * \mathbf{m}_{23}+2 \mathbf{m}_{22} * \mathbf{m}_{22}\right) .
\end{aligned}
$$

Efficient computation can be based on $\mathbf{H}^{\prime} v e c \mathbf{R} \mathbf{S}^{\prime}=(\mathbf{R} * \mathbf{S}) \mathbf{i}_{\ell}$ for \mathbf{R} and \mathbf{S} of order $n \times \ell$.

Appendix C: Consistency in a simple setting

The simulations highlight that UV1 can offer a size correct test even with only a single treated cluster, while UV2 and UV3 require a somewhat larger number of treated clusters. In this section, we explore these findings from a theoretical perspective. We derive the conditions under which the three variance estimators are consistent in a simple model that is rich enough to explain the observed features from our simulations. We consider a setting with a single regressor, which is a treatment dummy that is equal to one in t_{C} out of C clusters. The design is balanced, so that each cluster contains n / C observations. With the definitions given in the paper, we then find

$$
\begin{equation*}
\mathbf{X}^{\prime} \mathbf{X}=\left(n \cdot t_{C}\right) / C, \quad \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}=\left(n^{2} \cdot t_{C}\right) / C^{2} \tag{2}
\end{equation*}
$$

We assume that the regression errors $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$. We take $\boldsymbol{\Sigma}$ as in Section 3.1, so that all variance estimators are unbiased. Without changing the proof, we can take $\boldsymbol{\Sigma}$ as in Section 3.2 and show consistency of UV2 and UV3. The relevant property of $\boldsymbol{\Sigma}$ is that its maximum eigenvalue satisfies $\lambda_{\max }(\boldsymbol{\Sigma}) \leq M \cdot n / C$. This condition holds in the specifications of Section 3.1 and Section 3.2. In this section M denotes a generic positive constant that can differ between appearances.

A sufficient condition for $\hat{v} / v \rightarrow_{p} 1$ is that $\operatorname{var}(\hat{v}) / v^{2} \rightarrow 0$. Note that this implies that degrees of freedom, defined as $2 v^{2} / \operatorname{var}(\hat{v})$, diverge. Using the expressions derived in Section 4, we have

$$
\begin{align*}
\operatorname{var}(\hat{v}) / v^{2} & =2 \operatorname{tr}(\mathbf{A M} \mathbf{\Sigma} \mathbf{M} \mathbf{M} \boldsymbol{\Sigma} \mathbf{M}) / v^{2} \\
& \leq M \cdot \lambda_{\max }(\boldsymbol{\Sigma})^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{2} \operatorname{tr}\left(\mathbf{A}^{2}\right) \tag{3}\\
& \leq M \cdot(n / C)^{4} t_{C}^{2} \operatorname{tr}\left(\mathbf{A}^{2}\right),
\end{align*}
$$

where \mathbf{A} is the block diagonal matrix with blocks \mathbf{A}_{c} as given in Section 4 in the paper. We now proceed to derive explicit expressions for $\operatorname{tr}\left(\mathbf{A}^{2}\right)$ for the variance estimators UV1-UV3.

UV1 From Section 4, we have that

$$
\begin{equation*}
\mathbf{A}_{c}=r_{1} \mathbf{I}_{c}+r_{2} \mathbf{i}_{c} \mathbf{i}_{c}^{\prime}, \quad\left(r_{1}, r_{2}\right)=\mathbf{f}_{t}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\operatorname{vec} \mathbf{X}^{\prime} \mathbf{X}, \operatorname{vec} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right) \mathbf{\Psi}^{-1} \tag{4}
\end{equation*}
$$

The matrix Ψ defined in Section 3.1 depends on the following quantities,

$$
\ddot{n}=\sum_{c}(n / C)^{2}=n^{2} / C, \quad s=n / C, \quad \dot{s}=(n / C)^{2}, \quad \breve{s}=(n / C)^{2} .
$$

Since $\mathbf{s} \Psi$ is a 2×2 matrix, its inverse is easily obtained as

$$
\begin{aligned}
\boldsymbol{\Psi}^{-1} & =\frac{1}{n}\left(\begin{array}{cc}
1-n^{-1} & 1-C^{-1} \\
1-C^{-1} & (n / C)\left(1-C^{-1}\right)
\end{array}\right) \\
& =\frac{1}{n} \frac{1}{(n / C-1)\left(1-C^{-1}\right)}\left(\begin{array}{cc}
(n / C)\left(1-C^{-1}\right) & -\left(1-C^{-1}\right) \\
-\left(1-C^{-1}\right) & 1-n^{-1}
\end{array}\right) .
\end{aligned}
$$

Then, using (2),

$$
\left(\operatorname{vec} \mathbf{X}^{\prime} \mathbf{X}, \operatorname{vec} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right) \boldsymbol{\Psi}^{-1}=\frac{1}{C} \frac{1}{(n / C-1)\left(1-C^{-1}\right)}\left(0, t_{C}(n / C-1)\right)=\left(0, t_{C} /(C-1)\right)
$$

Using (4), we find that $r_{1}=0$ and $r_{2}=C^{2} /\left(n^{2} \cdot(C-1) \cdot t_{C}\right)$. Hence,

$$
\operatorname{tr}\left(\mathbf{A}^{2}\right)=\sum_{c} \operatorname{tr}\left(\mathbf{A}_{c}^{2}\right)=C \cdot r_{2}^{2} \cdot(n / C)^{2}=\frac{C^{2}}{t_{C}^{2} n^{2}} \frac{C}{(C-1)^{2}}
$$

Substituting this into (3), we find that

$$
\operatorname{var}(\hat{v}) / v^{2} \leq M \cdot\left(\frac{n}{C}\right)^{2} \frac{C}{(C-1)^{2}} .
$$

We conclude that for UV1 to be consistent, we require that the number of clusters grows sufficiently fast to guarantee that $n^{2} / C^{3} \rightarrow 0$. Importantly, consistency only depends on the number of clusters, and not on the number of treated clusters t_{C}.

UV2 Assume that the number of treated clusters $t_{C}>2$. From Section 4, we have

$$
\begin{equation*}
\mathbf{A}_{c}=r_{1 c} \mathbf{I}_{c}+r_{2 c} \mathbf{i}_{c} \mathbf{i}_{c}^{\prime}, \quad\left(\mathbf{r}_{1}^{\prime}, \mathbf{r}_{2}^{\prime}\right)=\mathbf{f}_{\ell}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \sum_{c}\left(\left(\operatorname{vec} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right) \mathbf{e}_{c}^{\prime},\left(\tilde{\mathbf{x}}_{c} \otimes \tilde{\mathbf{x}}_{c}\right) \mathbf{e}_{c}^{\prime}\right) \boldsymbol{\Phi}^{-1} \tag{5}
\end{equation*}
$$

Note that in the definition of $\boldsymbol{\Phi}$ given in Section 3.2 the elements $a_{c d}, \ell_{c d}, q_{c d}$ equal zero when one of the clusters is untreated. As a result, we have

$$
\boldsymbol{\Phi}=\left(\begin{array}{cccc}
\left(\frac{n}{C}-\frac{2}{t_{C}}\right) \mathbf{I}_{t_{C}}+\frac{1}{t_{C}^{2}} \mathbf{i}_{t_{C}} \mathbf{i}_{t_{t_{C}}} & \mathbf{0} & \frac{n}{C}\left[\frac{t_{C}-2}{t_{c}} \mathbf{I}_{t_{C}}+\frac{1}{t_{C}^{2}} \mathbf{i}_{t_{C}} \mathbf{i}_{t_{C}}^{\prime}\right] & \mathbf{0} \\
\mathbf{0} & \frac{n}{C} \mathbf{I}_{C-t_{C}} & \mathbf{0} & \frac{n}{C} \mathbf{I}_{C-t_{C}} \\
\frac{n}{C}\left[\frac{t_{C}-2}{t_{C}} \mathbf{I}_{t_{c}}+\frac{1}{t_{C}^{2}} \mathbf{i}_{t_{C}} \mathbf{i}_{t_{C}^{\prime}}^{\prime}\right. & \mathbf{0} & \left(\frac{n}{C}\right)^{2}\left[\frac{t_{C}-2}{t_{C}} \mathbf{I}_{t_{C}}+\frac{1}{t_{C}^{2}} \mathbf{i}_{t_{C}} \mathbf{i}_{t_{C}}^{\prime}\right] & \mathbf{0} \\
\mathbf{0} & \frac{n}{C} \mathbf{I}_{C-t_{C}} & \mathbf{0} & \left(\frac{n}{C}\right)^{2} \mathbf{I}_{C-t_{C}}
\end{array}\right) .
$$

We can analytically invert this matrix by by rearranging it into a block diagonal matrix and first invert the diagonal blocks that are formed by

$$
\mathbf{B}_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{n}{C}
\end{array}\right)\left(\begin{array}{cc}
\left.\frac{n}{C}-\frac{2}{t_{C}}\right) \mathbf{I}_{t_{C}}+\frac{1}{t_{t}} \mathbf{i}_{i_{C}} \mathbf{i}_{t_{t}}^{\prime} & \frac{t_{C}-2}{t_{C}} \mathbf{I}_{t_{C}}+\frac{1}{t_{C}} \mathbf{i}_{t_{c}} \mathbf{i}_{t_{C}}^{\prime} \\
\frac{t_{C}-2}{t_{C}} \mathbf{I}_{t_{c}}+\frac{1}{t_{C}} \mathbf{i}_{c_{C}} \mathbf{i}_{t_{C}^{\prime}} & \frac{t_{C}-2}{t_{C}} \mathbf{I}_{t_{C}}+\frac{1}{t_{C}} \mathbf{i}_{t_{C}} \mathbf{i}_{t_{c}^{\prime}}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{n}{C}
\end{array}\right) .
$$

and

$$
\mathbf{B}_{2}=\left(\begin{array}{cc}
\frac{n}{C} \mathbf{I}_{C-t_{C}} & \frac{n}{C} \mathbf{I}_{C-t_{C}} \\
\frac{n}{C} \mathbf{I}_{C-t_{C}} & \left(\frac{n}{C}\right)^{2} \mathbf{I}_{C-t_{C}}
\end{array}\right) .
$$

The inverse of the first diagonal block is simplified by that fact that the upper right, lower left and lower right blocks are identical. We obtain

$$
\mathbf{B}_{1}^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{C}{n}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{n}{C}-1\right)^{-1} \mathbf{I}_{t_{C}} & -\left(\frac{n}{C}-1\right)^{-1} \mathbf{I}_{t_{C}} \\
-\left(\frac{n}{C}-1\right)^{-1} \mathbf{I}_{t_{C}}
\end{array}\left(\left(\frac{n}{C}-1\right)^{-1}+\frac{t_{C}}{t_{C}-2}\right) \mathbf{I}_{t_{C}}-\frac{1}{\left(t_{C}-2\right)\left(t_{C}-1\right)} \mathbf{i}_{t_{C}} \mathbf{i}_{t_{C}}^{\prime}\right) ~\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{C}{n}
\end{array}\right),
$$

The inverse of the second block is

$$
\mathbf{B}_{2}^{-1}=\left(\begin{array}{cc}
\frac{n}{C} \mathbf{I}_{C-t_{C}} & \frac{n}{C} \mathbf{I}_{C-t_{C}} \\
\frac{n}{C} \mathbf{I}_{C-t_{C}} & \left(\frac{n}{C}\right)^{2} \mathbf{I}_{C-t_{C}}
\end{array}\right)^{-1}=\frac{1}{\frac{n}{C}-1}\left(\begin{array}{cc}
\mathbf{I}_{C-t_{C}} & -\frac{C}{n} \mathbf{I}_{C-t_{C}} \\
-\frac{C}{n} \mathbf{I}_{C-t_{C}} & \frac{C}{n} \mathbf{I}_{C-t_{C}}
\end{array}\right)
$$

Rearranging back into the original form of $\boldsymbol{\Phi}$, we obtain
$\boldsymbol{\Phi}^{-1}=\left(\frac{n}{C}-1\right)^{-1}\left(\begin{array}{cccc}\mathbf{I}_{t_{C}} & \mathbf{0} & -\frac{C}{n} \mathbf{I}_{t_{C}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{C-t_{C}} & \mathbf{0} & -\frac{C}{n} \mathbf{I}_{C-t_{C}} \\ -\frac{C}{n} \mathbf{I}_{t_{C}} & \mathbf{0} & \left(\frac{n}{C}-1\right)\left(\frac{C}{n}\right)^{2}\left[\left(\left(\frac{n}{C}-1\right)^{-1}+\frac{t_{C}}{t_{C}-2}\right) \mathbf{I}_{t_{C}}-\frac{1}{\left(t_{C}-2\right)\left(t_{C}-1\right)} \mathbf{i}_{t_{C}} \mathbf{i}_{t_{C}}^{\prime}\right] & \mathbf{0} \\ \mathbf{0} & -\frac{C}{n} \mathbf{I}_{C-t_{C}} & \mathbf{0} & \frac{C}{n} \mathbf{I}_{C-t_{C}}\end{array}\right)$.
Using that for the treated clusters $\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}=n / C$ and $\tilde{\mathbf{x}}_{c} \otimes \tilde{\mathbf{x}}_{c}=(n / C)^{2}$, we get that

$$
\begin{aligned}
\sum_{c}\left(\left(\operatorname{vec} \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right) \mathbf{e}_{c}^{\prime},\left(\tilde{\mathbf{x}}_{c} \otimes \tilde{\mathbf{x}}_{c}\right) \mathbf{e}_{c}^{\prime}\right) \boldsymbol{\Phi}^{-1} & =\left(\mathbf{0}_{C}^{\prime},\left(\frac{t_{C}}{t_{C}-2}-\frac{t_{C}}{\left(t_{C}-2\right)\left(t_{C}-1\right)}\right) \mathbf{i}_{t_{C}}^{\prime}, \mathbf{0}_{C-t_{C}}^{\prime}\right) \\
& =\left(\mathbf{0}_{C}^{\prime}, \frac{t_{C}}{t_{C}-1} \mathbf{i}_{t_{C}}^{\prime}, \mathbf{0}_{C-t_{C}}^{\prime}\right) .
\end{aligned}
$$

In (5) we now have $\mathbf{r}_{1}=\mathbf{0}$ and $\mathbf{r}_{2 c}=\frac{1}{t_{C}^{2}}\left(\frac{C}{n}\right)^{2} \frac{t_{C}}{t_{C}-1}$ if cluster c is treated and zero otherwise. Then,

$$
\operatorname{tr}\left(\mathbf{A}^{2}\right)=t_{C}\left(\frac{n}{C}\right)^{2} \cdot \frac{1}{t_{C}^{4}}\left(\frac{C}{n}\right)^{4} \frac{t_{C}^{2}}{\left(t_{C}-1\right)^{2}} .
$$

Substituting this into (3) we conclude that

$$
\operatorname{var}(\hat{v}) / v^{2} \leq M \cdot\left(\frac{n}{C}\right)^{2} \frac{t_{C}}{\left(t_{C}-1\right)^{2}} .
$$

We conclude that UV2 is consistent for v when $n^{2} /\left(C^{2} \cdot t_{C}\right) \rightarrow 0$. A necessary condition for this to happen is that the number of treated clusters $t_{C} \rightarrow \infty$. This stands in marked contrast with the finding for UV1 above.

UV3 Assume that $t_{C}>2$.

$$
\begin{equation*}
\mathbf{A}_{c}=\mathbf{X}_{c} \mathbf{Q}_{c} \mathbf{X}_{c}^{\prime}, \quad\left(\operatorname{vec} \mathbf{Q}_{c}\right)^{\prime}=\mathbf{f}_{\ell}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}+\sum_{c} \mathbf{S}_{c}^{-1}\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c} \otimes \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)\right)^{-1} \mathbf{S}_{c}^{-1} \tag{6}
\end{equation*}
$$

If cluster c is treated, we have $S_{c}=1-2 / t_{C}$, while if cluster c is not treated, we have $S_{c}=1$. Then,

$$
\mathbf{X}^{\prime} \mathbf{X} \otimes \mathbf{X}^{\prime} \mathbf{X}+\sum_{c} \mathbf{S}_{c}^{-1}\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c} \otimes \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)=\left(n \cdot t_{C}\right)^{2} / C^{2}+t_{C}^{2} /\left(t_{C}-2\right)(n / C)^{2}=\left(\frac{n \cdot t_{c}}{C}\right)^{2} \cdot \frac{t_{c}-1}{t_{C}-2} .
$$

Then with A_{c} from (6), we find

$$
\operatorname{tr}\left(\mathbf{A}^{2}\right)=\sum_{c} \operatorname{tr}\left(\mathbf{A}_{c}^{2}\right)=t_{C} \cdot \frac{n^{2}}{C^{2}} \frac{C^{4}}{n^{4} \cdot t_{C}^{4}} \frac{\left(t_{C}-2\right)^{2}}{\left(t_{C}-1\right)^{2}} \frac{t_{C}^{2}}{\left(t_{C}-2\right)^{2}}=\frac{C^{2}}{n^{2} t_{C}\left(t_{C}-1\right)^{2}} .
$$

Substituting this into (3), we conclude that

$$
\operatorname{var}(\hat{v}) / v^{2} \leq M \cdot\left(\frac{n}{C}\right)^{2} \frac{t_{C}}{\left(t_{C}-1\right)^{2}}
$$

For consistency of UV3 we therefore require that $n^{2} /\left(C^{2} \cdot t_{C}\right) \rightarrow 0$. This is the same condition as for UV2, so that again we require the number of treated clusters $t_{C} \rightarrow \infty$.

