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Appendix A: Derivation of the unbiased variance estimators

Equicorrelated errors
In this section we consider the case where the errors are equicorrelated within clusters, so

Σ = σ2In + τ
2BB′,

hence the design matrix for this case is

D = (vec In, vec BB′).

Let

s ≡ tr(X′X)−1X̃′X̃
ṡ ≡ tr(X′X)−1X̃′X̃(X′X)−1X̃′X̃
s̆ ≡ tr(X′X)−1X̃′∆nX̃.

Then

D′D =

(
trIn trB′B

trB′B tr(B′B)2

)
=

(
n n
n n̈

)
D′(In ⊗ P)D =

(
trP trB′PB

trB′PB trB′BB′PB

)
=

(
k s
s s̆

)
D′(P ⊗ P)D =

(
trP trB′PB

trB′PB tr(B′PB)2

)
=

(
k s
s ṡ

)
.
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So

Ψ ≡ D′(M ⊗M)D

=

(
n − k n − s
n − s n̈ − 2s̆ + ṡ

)
.

So for the current case (2) becomes

v̂ = R′[D′(M ⊗M)D]−1D′(ε̂ ⊗ ε̂)

= (X′X ⊗ X′X)−1(X ⊗ X)′
(
vec In, vec BB′

)
Ψ−1

(
vec In, vec BB′)

)′
(ε̂ ⊗ ε̂)

= (X′X ⊗ X′X)−1
(
vec X′X, vec X̃′X̃

)
Ψ−1(ε̂′ε̂, ˜̂ε′ ˜̂ε)′.

Cluster-specific parameters
We now let σ2 and τ2 vary over clusters and the parameter vector becomes

λ = (σ2
1, . . . , σ

2
C, τ

2
1, . . . , τ

2
C)′.

So now

Σ =
∑

c(σ
2
cGcG

′

c + τ
2
cbcb

′

c)

D =
∑

c(gce
′
c,hce

′
c),

with

gc ≡ vecGcG
′

c

hc ≡ bc ⊗ bc,

with properties

g′cgc = nc

h′chc = n2
c

g′chc = nc,

for c = 1, . . . ,C, while g′ccd = h′chd = c′ghd = 0 for d , c, and

(X ⊗ X)′gc = vecX′cXc

(X ⊗ X)′hc = x̃c ⊗ x̃c

(ε̂ ⊗ ε̂)′gc = ε̂′cε̂c

(ε̂ ⊗ ε̂)′hc =
˜̂ε2

c ,

2



with εc the residuals of cluster c and ¯̃εc their sum over the observations in the cluster, this all for
c = 1, . . . ,C. Further

g′c(In ⊗ P)gc = (vecGcG
′

c)
′
(
In ⊗ X(X′X)−1X′

)
(vecGcG

′

c)

= tr
(
GcG

′

cX(X′X)−1X′GcG
′

c

)
= tr(X′X)−1X′cXc

≡ sc

h′c(In ⊗ P)hc = (bc ⊗ bc)
′
(
In ⊗ X(X′X)−1X′

)
(bc ⊗ bc)

= ncx̃
′

c(X
′X)−1x̃c

≡ nc s̃c

g′c(In ⊗ P)hc = (vecGcG
′

c)
′
(
In ⊗ X(X′X)−1X′

)
(bc ⊗ bc)

= tr
(
GcG

′

cX(X′X)−1X′bcb
′

c

)
= x̃′c(X

′X)−1x̃c

= s̃c,

while it appears directly from the derivations that the terms across clusters are zero. This does not
hold for the terms involving P ⊗ P. There we have

g′c(P ⊗ P)gd = (vecGcG
′

c)
′
(
X(X′X)−1X′ ⊗ X(X′X)−1X′

)
(vecGdG′d)

= tr
(
GcG

′

cX(X′X)−1X′GcG
′

cX(X′X)−1X′
)

= tr(X′X)−1X′cXc(X
′X)−1X′dXd

≡ acd

h′c(P ⊗ P)hd = (bc ⊗ bc)
′
(
X(X′X)−1X′ ⊗ X(X′X)−1X′

)
(bd ⊗ bd)

=
(
x̃′c(X

′X)−1x̃d

)2

≡ qcd

g′c(P ⊗ P)hd = (vecGcG
′

c)
′
(
X(X′X)−1X′ ⊗ X(X′X)−1X′

)
(bd ⊗ bd)

= tr
(
GcG

′

cX(X′X)−1X′bcbcX(X′X)−1X′
)′

= x̃′d(X′X)−1X′cXc(X
′X)−1x̃d

≡ ℓcd
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We let ∆s and ∆s̃ be the diagonal matrices containing the sc and s̃c and collect the acd, ℓcd and qcd in
the matrices A,L and Q, respectively. Then we obtain

D′D =

(
∆n ∆n
∆n ∆

2
n

)
D′(In ⊗ P)D =

(
∆s ∆s̃
∆s̃ ∆n∆s̃

)
D′(P ⊗ P)D =

(
A L
L′ Q

)
.

So

Φ = D′(M ⊗M)D

=

(
∆n − 2∆s + A ∆n − 2∆s̃ + L
∆n − 2∆s̃ + L′ ∆2

n − 2∆n∆s̃ +Q

)
.

Combining the various elements, our unbiased estimator of the covariance matrix of the estimated
regression coefficients is

v̂ = R′[D′(M ⊗M)D]−1D′(ε̂ ⊗ ε̂)

= (X′X ⊗ X′X)−1(X ⊗ X)′
∑

c(gce
′
c,hce

′
c)Φ

−1 ∑
c(gce

′
c,hce

′
c)
′(ε̂ ⊗ ε̂)

= (X′X ⊗ X′X)−1 ∑
c

(
(vecX′cXc)e

′
c, (x̃c ⊗ x̃c)e

′
c

)
Φ−1 ∑

c(ecε̂
′
cε̂c, ec

˜̂ε2
c)′.

Unrestricted error correlation within clusters
We now consider the case where the errors correlate freely within clusters, in a way that differs
over clusters. The structure of Σ thus is

Σ = diag Λc

=
∑

c GcΛcG
′

c.

This is a quite general structure, involving many parameters. It may even seem too generous in
parameters but it has the merit to encompass all kinds of generalizations of the cluster-specific
structure of Section 3.2 like factor structures. Since

vecΣ =
∑

c(Gc ⊗Gc)vecΛc,

the design matrix now is, using the ⊗̇ notation introduced at the end of Section 2,

D =
(
G1 ⊗G1, . . . ,GC ⊗GC

)
=

∑
c e′c ⊗̇ Gc ⊗Gc.

Then, with
Pc ≡ Xc(X

′X)−1X′c,

4



we obtain

D′D =
∑

c ece
′
c ⊗̇ Ic ⊗ Ic

D′(In ⊗ P)D =
(∑

c ec ⊗̇ G′c ⊗G′c
)

(In ⊗ P)
(∑

c e′c ⊗̇ Gc ⊗Gc

)
=

∑
ece
′
c ⊗̇ Ic ⊗ Pc

D′(P ⊗ In)D =
∑

ece
′
c ⊗̇ Pc ⊗ Ic.

In the previous two cases we had a limited amount of parameters. But now we are faced with a
possibly very large number of parameters, so we use (3) rather than (2).

Elaborating the expressions for A and F in (3) for the current case we get

A = D′D − D′(In ⊗ P)D − D′(P ⊗ In)D
=

∑
c ece

′
c ⊗̇ (Ic ⊗ Ic − Ic ⊗ Pc − Pc ⊗ Ic)

≡
∑

c ece
′
c ⊗̇ Ac

F = D′(X ⊗ X)

=
∑

c ec ⊗̇ Xc ⊗ Xc

≡
∑

c ec ⊗̇ Fc,

with Ac and Fc implicitly defined. Then

F′cAc = X′c ⊗ X′c − X′c ⊗ X′cXc(X
′X)−1X′c − X′cXc(X

′X)−1X′c ⊗ X′c
=

(
Ik2 − Ik ⊗ X′cXc(X

′X)−1 − X′cXc(X
′X)−1 ⊗ Ik

)
F′c

≡ ScF
′

c,

with Sc of order k2 × k2 implicitly defined, so F′cA
−1
c = S−1

c F′c and

F′A−1F =
∑

c F′cA
−1
c Fc

=
∑

c S−1
c (X′cXc ⊗ X′cXc).

The final expression from (3) to be elaborated is

F′A−1D′(ε̂ ⊗ ε̂) =
(∑

c e′c ⊗̇ S−1
c F′c

) (∑
c ec ⊗̇ G′c ⊗G′c

)
(ε̂ ⊗ ε̂)

=
∑

c S−1
c (X′cε̂c ⊗ X′cε̂c).

Then (3) becomes

v̂ =
(
X′X ⊗ X′X +

∑
c S−1

c (X′cXc ⊗ X′cXc)
)−1 ∑

c S−1
c (X′cε̂c ⊗ X′cε̂c).
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Appendix B: Degrees of freedom with random effects
In this appendix we elaborate the denominator of (19) and derive estimators for the parameters in
d̂
ℓ
. We start with the former. First,

trAMΣMAMΣM = σ4trAMAM + 2σ2τ2trB′MAMAMB + τ4tr(B′MAMB)2. (1)

The first term at the right-hand side was already elaborated in (18). As to the second term,

AMA =
∑

c GcA
2
cG′c −

∑
c,d GcAcXc(X

′X)−1X′dAdG′d

so

trB′MAMAMB = tr
∑

c A2
cG′cMBB′MGc

−tr
∑

c,d(X′X)−1X′dAdG′dMBB′MGcAcXc.

From

G′cMB = ice
′

c − Xc(X
′X)−1X̃′

≡ ice
′

c − Lc

we obtain

G′cMBB′MGc = ici
′

c − Xc(X
′X)−1x̃cι

′

c − icx̃
′

c(X
′X)−1X′c + Xc(X

′X)−1X̃′X̃(X′X)−1X′c

and, letting µc ≡ (X′X)−1X′cAcic, we have trB′MAMAMB = T1 + T2, with

T1 =
∑

c i′cA
2
cic − 2

∑
c i′cA

2
cXc(X

′X)−1x̃c + tr
∑

c(X
′X)−1X̃′X̃(X′X)−1X′cA

2
cXc

T2 = tr
∑

c,d(X′X)−1X′dAd(ide′d − Ld)(eci
′

c − L′c)eAcXc

=
∑

c µ
′
cX
′Xµc − 2

∑
c x̃′c(X

′X)−1X′AXµc + tr(X′X)−1X′AX(X′X)−1X̃′X̃(X′X)−1X′AX.

So far for the second term at the right-hand side of (27).
As to the third term, let λc ≡ i′cAcic and

B′MAMB =
∑

c(B
′ − X̃(X′X)−1X′)GcAcG

′

c(B − X(X′X)−1X̃′)

=
∑

c

(
λcece

′
c − X̃µce

′
c − ecµ

′
cX̃
′
)
+ X̃WX̃′

≡ S + X̃WX̃′.

Then

trS2 =
∑

c

(
λ2

c − 4e′cX̃µc + 2µ′cX̃
′X̃µc

)
+ 2

∑
c,d x̃′µde′dx̃′µc

trSX̃WX̃′ =
∑

c

(
λcx̃

′

cWx̃c − 2x̃′cWX̃µc

)
tr(X̃WX̃′)2 = tr

(
WX̃′X̃

)2
.
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Combining these elements we obtain an expression for tr(B′MAMB)2.
In the spirit of the “unbiased” theme of this paper, we estimate d

ℓ
in (15) by using unbiased

estimators for σ4, σ2τ2 and τ4, which we will now derive. With the subscript to mab denoting an
expression with a Ms and b BB′s, there holds

E(ε̂ ∗ ε̂) = H′ E(ε̂ ⊗ ε̂)

= H′(M ⊗M)vec(σ2In + τ
2BB′)

= σ2H′vecM + τ2H′vecMBB′M
≡ σ2m10 + τ

2m21.

We additionally have

E(ε̂ ∗ BB′ε̂) = H′ E(ε̂ ⊗ BB′ε̂)

= H′(M ⊗ BB′M)vec(σ2In + τ
2BB′)

= σ2H′vecBB′M + τ2H′vecBB′MBB′M
≡ σ2m11 + τ

2m22

and

E(BB′ε̂ ∗ BB′ε̂) = H′ E(BB′ε̂ ⊗ BB′ε̂)

= H′(BB′M ⊗ BB′M)vec(σ2In + τ
2BB′)

= σ2H′vecBB′MBB′ + τ2H′vecBB′M BB′MBB′

≡ σ2m12 + τ
2m23.

Then

i′n E(ε̂ ∗ ε̂ ∗ ε̂ ∗ ε̂) = 3i′n
(
(σ2m10 + τ

2m21) ∗ (σ2m10 + τ
2m21)

)
i′n E(ε̂ ∗ ε̂ ∗ BB′ε̂ ∗ BB′ε̂) = i′n

(
(σ2m10 + τ

2m21) ∗ (σ2m12 + τ
2m23)

+2(σ2m11 + τ
2m22) ∗ (σ2m11 + τ

2m22)
)

i′n E(BB′ε̂ ∗ BB′ε̂ ∗ BB′ε̂ ∗ BB′ε̂) = 3i′n
(
(σ2m12 + τ

2m23) ∗ (σ2m12 + τ
2m23)

)
.

Solving the sample counterpart of this system readily leads to unbiased estimators for the three
parameters,

3i′n(m10 ∗m10) 6i′n(m10 ∗m21) 3i′n(m21 ∗m21)
x y z

3i′n(m12 ∗m12) 6i′n(m12 ∗m23) 3i′n(m23 ∗m23)



σ̂4

σ̂2τ2

τ̂4

 =


∑
i ε̂

4
i∑

i ε̂
2
i ε̃

2
i∑

i ε̃
4
i

 ,
with

x ≡ i′n(m10 ∗m12 + 2m11 ∗m11)

y ≡ i′n(m10 ∗m23 +m21 ∗m12 + 4m22 ∗m11)

z ≡ i′n(m21 ∗m23 + 2m22 ∗m22).

Efficient computation can be based on H′vecRS′ = (R ∗ S)i
ℓ

for R and S of order n × ℓ.
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Appendix C: Consistency in a simple setting
The simulations highlight that UV1 can offer a size correct test even with only a single treated
cluster, while UV2 and UV3 require a somewhat larger number of treated clusters. In this section,
we explore these findings from a theoretical perspective. We derive the conditions under which
the three variance estimators are consistent in a simple model that is rich enough to explain the
observed features from our simulations. We consider a setting with a single regressor, which is a
treatment dummy that is equal to one in tC out of C clusters. The design is balanced, so that each
cluster contains n/C observations. With the definitions given in the paper, we then find

X′X = (n · tC)/C, X̃′X̃ = (n2 · tC)/C2. (2)

We assume that the regression errors ε ∼ N(0,Σ). We take Σ as in Section 3.1, so that all variance
estimators are unbiased. Without changing the proof, we can take Σ as in Section 3.2 and show
consistency of UV2 and UV3. The relevant property of Σ is that its maximum eigenvalue satisfies
λmax(Σ) ≤ M · n/C. This condition holds in the specifications of Section 3.1 and Section 3.2. In
this section M denotes a generic positive constant that can differ between appearances.

A sufficient condition for v̂/v→p 1 is that var(v̂)/v2 → 0. Note that this implies that the degrees
of freedom, defined as 2v2/var(v̂), diverge. Using the expressions derived in Section 4, we have

var(v̂)/v2 = 2tr(AMΣMAMΣM)/v2

≤ M · λmax(Σ)2(X′X)2tr(A2)

≤ M · (n/C)4t2
Ctr(A2),

(3)

where A is the block diagonal matrix with blocks Ac as given in Section 4 in the paper. We now
proceed to derive explicit expressions for tr(A2) for the variance estimators UV1-UV3.

UV1 From Section 4, we have that

Ac = r1Ic + r2ici
′

c, (r1, r2) = f′
ℓ
(X′X ⊗ X′X)−1(vecX′X, vecX̃′X̃)Ψ−1 (4)

The matrix Ψ defined in Section 3.1 depends on the following quantities,

n̈ =
∑

c

(n/C)2 = n2/C, s = n/C, ṡ = (n/C)2, s̆ = (n/C)2.

Since sΨ is a 2 × 2 matrix, its inverse is easily obtained as

Ψ−1 =
1
n

(
1 − n−1 1 −C−1

1 −C−1 (n/C)(1 −C−1)

)
=

1
n

1
(n/C − 1)(1 −C−1)

(
(n/C)(1 −C−1) −(1 −C−1)
−(1 −C−1) 1 − n−1

)
.

Then, using (2),

(vecX′X, vecX̃′X̃)Ψ−1 =
1
C

1
(n/C − 1)(1 −C−1)

(0, tC(n/C − 1)) = (0, tC/(C − 1)).
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Using (4), we find that r1 = 0 and r2 = C2/(n2 · (C − 1) · tC). Hence,

tr(A2) =
∑

c

tr(A2
c) = C · r2

2 · (n/C)2 =
C2

t2
Cn2

C
(C − 1)2 .

Substituting this into (3), we find that

var(v̂)/v2 ≤ M ·
( n
C

)2 C
(C − 1)2 .

We conclude that for UV1 to be consistent, we require that the number of clusters grows sufficiently
fast to guarantee that n2/C3 → 0. Importantly, consistency only depends on the number of clusters,
and not on the number of treated clusters tC.

UV2 Assume that the number of treated clusters tC > 2. From Section 4, we have

Ac = r1cIc + r2cici
′

c, (r′1, r
′

2) = f′
ℓ
(X′X ⊗ X′X)−1

∑
c

(
(vecX′cXc)e

′

c, (x̃c ⊗ x̃c)e
′

c

)
Φ−1. (5)

Note that in the definition of Φ given in Section 3.2 the elements acd, ℓcd, qcd equal zero when one
of the clusters is untreated. As a result, we have

Φ =



(
n
C −

2
tC

)
ItC
+ 1

t2C
itC

i′tC 0 n
C

[
tC−2

tC
ItC
+ 1

t2C
itC

i′tC

]
0

0 n
C IC−tC

0 n
C IC−tC

n
C

[
tC−2

tC
Itc
+ 1

t2C
itC

i′tC

]
0

(
n
C

)2
[

tC−2
tC

ItC
+ 1

t2C
itC

i′tC

]
0

0 n
C IC−tC

0
(

n
C

)2
IC−tC


.

We can analytically invert this matrix by by rearranging it into a block diagonal matrix and first
invert the diagonal blocks that are formed by

B1 =

(
1 0
0 n

C

) 
(

n
C −

2
tC

)
ItC
+ 1

t2C
itC

i′tC
tC−2

tC
ItC
+ 1

t2C
itC

i′tC
tC−2

tC
Itc
+ 1

t2C
itC

i′tC
tC−2

tC
ItC
+ 1

t2C
itC

i′tC


(

1 0
0 n

C

)
.

and

B2 =

 n
C IC−tC

n
C IC−tC

n
C IC−tC

(
n
C

)2
IC−tC

 .
The inverse of the first diagonal block is simplified by that fact that the upper right, lower left and
lower right blocks are identical. We obtain

B−1
1 =

(
1 0
0 C

n

) 
(

n
C − 1

)−1
ItC

−
(

n
C − 1

)−1
ItC

−
(

n
C − 1

)−1
ItC

((
n
C − 1

)−1
+

tC
tC−2

)
ItC
− 1

(tC−2)(tC−1) itC
i′tC


(

1 0
0 C

n

)
,

The inverse of the second block is

B−1
2 =

 n
C IC−tC

n
C IC−tC

n
C IC−tC

(
n
C

)2
IC−tC


−1

=
1

n
C − 1

 IC−tC
−C

n IC−tC
−C

n IC−tC
C
n IC−tC
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Rearranging back into the original form of Φ, we obtain

Φ−1 =

( n
C
− 1

)−1


ItC

0 −C
n ItC

0

0 IC−tC
0 −C

n IC−tC

−C
n ItC

0
(

n
C − 1

) (
C
n

)2
[((

n
C − 1

)−1
+

tC
tC−2

)
ItC
− 1

(tC−2)(tC−1) itC
i′tC

]
0

0 −C
n IC−tC

0 C
n IC−tC


.

Using that for the treated clusters X′cXc = n/C and x̃c ⊗ x̃c = (n/C)2, we get that∑
c

(
(vecX′cXc)e

′

c, (x̃c ⊗ x̃c)e
′

c

)
Φ−1 =

(
0′C,

(
tC

tC − 2
−

tC
(tC − 2)(tC − 1)

)
i′tC ,0

′

C−tC

)
=

(
0′C,

tC
tC − 1

i′tC ,0
′

C−tC

)
.

In (5) we now have r1 = 0 and r2c =
1
t2C

(
C
n

)2 tC
tC−1 if cluster c is treated and zero otherwise. Then,

tr(A2) = tC

( n
C

)2
·

1
t4
C

(C
n

)4 t2
C

(tC − 1)2 .

Substituting this into (3) we conclude that

var(v̂)/v2 ≤ M ·
( n
C

)2 tC
(tC − 1)2 .

We conclude that UV2 is consistent for v when n2/(C2 · tC) → 0. A necessary condition for this
to happen is that the number of treated clusters tC → ∞. This stands in marked contrast with the
finding for UV1 above.

UV3 Assume that tC > 2.

Ac = XcQcX
′

c, (vecQc)
′ = f′

ℓ

(
X′X ⊗ X′X +

∑
c S−1

c (X′cXc ⊗ X′cXc)
)−1

S−1
c . (6)

If cluster c is treated, we have S c = 1−2/tC, while if cluster c is not treated, we have S c = 1. Then,

X′X ⊗ X′X +
∑

c S−1
c (X′cXc ⊗ X′cXc) = (n · tC)2/C2 + t2

C/(tC − 2)(n/C)2 =
(n·tC

C

)2
·

tC−1
tC−2 .

Then with Ac from (6), we find

tr(A2) =
∑

c

tr(A2
c) = tC ·

n2

C2

C4

n4 · t4
C

(tC − 2)2

(tC − 1)2

t2
C

(tC − 2)2 =
C2

n2tC(tC − 1)2 .

Substituting this into (3), we conclude that

var(v̂)/v2 ≤ M ·
( n
C

)2 tC
(tC − 1)2 .

For consistency of UV3 we therefore require that n2/(C2 · tC) → 0. This is the same condition as
for UV2, so that again we require the number of treated clusters tC → ∞.
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