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Appendix A: Derivation of the unbiased variance estimators

Equicorrelated errors

In this section we consider the case where the errors are equicorrelated within clusters, so
X =o’l, + BB,

hence the design matrix for this case is

D = (vec I ,vec BB).

Let
s = wX'X)'X'X
s = oX'X) T XXXX) XX
§ o= aX'X)'XA X
Then
trl trB’'B
DD = | \p'B tr(B'B)z)
_(n n)
n n
DI(I” @P)D = trltir’II)’B trltir'llsilli)’li’B)
[k s)
S S
D'PeP)D = trlt;'II)’B trt(rBB'II’)II:)Z)
[k s)
S S
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So

=&
I

D'(M ® M)D

n—k n—-s
n—-s in-=-25+s/°

So for the current case (2) becomes

¥ = RDMMD] 'D'(¢é®é)
XX X'X) '(X®X) (vec I .vec BB’ ) (vec I, vec BB')) (€®8é)
X'X®X'X)! (vec X'X, vec X X) wlgg, BBy,

Cluster-specific parameters

We now let o and 72 vary over clusters and the parameter vector becomes

) 2 2 2y
= (O] s O T s TE)
So now
r = 3. (0'2G G/ +becb:)
D = > .(ge.he),
with
g = vecG,G)
h, = b.®b,
with properties
geg = n
hh, = n
g:hc c’

forc = 1,...,C,whileg;cd:h:hd:c;hd=0f0rd¢c,and

X®X)g = vecX'X

X®X)Yh, = X ®%
E®éyg, = éé,
E®é'h, = &,



with g the residuals of cluster ¢ and E‘C their sum over the observations in the cluster, this all for
c=1,...,C. Further

(vecG, G (I, ® X(X'X)™'X) (vecG, G)
= (GG XXX)'X'GG)
= o(X'X)'X'X,
= SC
h(I,ePh = (b ®b)(I,eXXX)"'X)(b &b)
= nXXX) 'k,
= nS,
g (I, ®Ph = (vecG G (I, @ XX'X)"'X)(b ®b)
= tr(G,GX(X'X)'X'b b))
= X(X'X)'%,

= RY ,

c

g ®P)g,

while it appears directly from the derivations that the terms across clusters are zero. This does not
hold for the terms involving P ® P. There we have

g(PeP)g, = (vecG,G)) (XX'X)'X & X(X'X)'X') (vecG,G))
= tr(G,GXX'X)'X'G G XX'X)"'X)
= oX'X)"'X' X (X'X)"'X'X,
= Gy
h(PePh, = (b, ®b) (XXX)'X @ XX'X)"'X)(b,®b,)
- (REX)'R,)
= dy
(vecG, G (X(X'X)'X’' @ X(X'X)"'X) (b, ® b,)
= (G GXX'X)"'X'b b X(X'X)'X')
= XX XX (X'X)'g,
= ¢

g (P Ph,

cd



We let A and A_ be the diagonal matrices containing the s_and §_ and collect the a_,, €, and g , in
the matrices A, L and Q, respectively. Then we obtain

4 — An An
oo - (3 )
D'd ®@P)D = A A )
" A? n—3§

) A L
DPePD = | Q).

So

® = DIMM)D
3 A -2A +A A -2A +L
" \A -2A+L A2-2AA +Q )
Combining the various elements, our unbiased estimator of the covariance matrix of the estimated
regression coefficients is

¥ = RIDMeM)D]'D'(é®é)
= X'XeXX)'XeX) Y (ge. he)®d 'Y (ge . he)E®E)
X'X®X'X)"' 3, ((vecX/X )e/, (X ®% )e ) ¥ (e /¢ . e 2.

cc-c’

Unrestricted error correlation within clusters

We now consider the case where the errors correlate freely within clusters, in a way that differs
over clusters. The structure of X thus is

X

diag A,
2. GAG

c" et

This is a quite general structure, involving many parameters. It may even seem too generous in
parameters but it has the merit to encompass all kinds of generalizations of the cluster-specific
structure of Section 3.2 like factor structures. Since

veck = 3 (G, ® G )vecA
the design matrix now is, using the ® notation introduced at the end of Section 2,

D = (G,8G,.....G.8G,)
= 2.¢8G.0G.

Then, with
P =X (X'X)'X/,
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we obtain

DD = } ee ®I ®I

D'I,ePD = (L e &G oG )I,3P) (I &G oG)
= Yee ®l ®P,
D'PRL)D = Yee &P oI,

In the previous two cases we had a limited amount of parameters. But now we are faced with a
possibly very large number of parameters, so we use (3) rather than (2).
Elaborating the expressions for A and F in (3) for the current case we get

A = DD-D'( ePD-D'P®L)D
= y.ee el -1.9P -P ®I)
= T.e€ ®A,

F = DX®X)
= 2.e X ®X,

2.e®F,

with A _and F _ implicitly defined. Then

FA = X eX -XoXXXX) X -XX XX 'X eX

= (L.-LeXX XX)" -XX (XX)" ®I)F,

= S F,
with S, of order k* X k* implicitly defined, so F’/A”" = S_'F’ and

FA''F = 3 FA'F,
= 2.8 (XX X/ X).
The final expression from (3) to be elaborated is
FA'D(¢0é) = (Z.e&S'F)(Z e &G 8G)Eoe)
.S (Xe ®X/E).

Then (3) becomes

V= (XXeX'X+X S'(XX &X XC))_I 2.8 (XE ®XE).



Appendix B: Degrees of freedom with random effects

In this appendix we elaborate the denominator of (19) and derive estimators for the parameters in
d,. We start with the former. First,

trAMEIMAMEM = ¢*trAMAM + 20°t*trB'MAMAMB + 7*tr(B'MAMB)?. (1)
The first term at the right-hand side was already elaborated in (18). As to the second term,

AMA = 3 G A’G, -3, ,GAX (XX 'XA,G,

SO
tB'MAMAMB = tr} A’G'MBB'MG,
-y XX)"'X A ,GMBB'MG A X .
From
GMB = ie -X XX)'X
= ie -L,
we obtain

G'MBBMG, =ii - X X'X) "%« - i xXX) "X + X XX) ' XXXX)"'X
and, letting pt, = (X’X)”X;Acic, we have tB'MAMAMB = T, + T,, with

o/ A Ds o/ A2 ’ —lz ’ -1V ’ - A2
T, = Y.UAN -2 PAZX (X'X)'%, + tr Y, (X'X) X KXX) X AX
T

, = oy (XX)'XA (e, - L)ei —L)eA X,
= Y puXXp, -2Y XX)XAXp, + X X)X AXXX) XXX X)X AX.

So far for the second term at the right-hand side of (27).
As to the third term, let A = i;Acic and

BMAMB = 3 (B'-X(X'X)"'X)GA G.(B-XXX)"'X)
= Y. (/lcece; ~Xpe - ecuéﬁ') + XWX’
= S+XWX.
Then
aS® = 3, (/13 —4e/Xp, + 2“25(,5(/%) +23 XX,
uSXWX' = ¥ (1% Wk - 28 WXp, )

~ )~

rXWX'): = (WX X)z.



Combining these elements we obtain an expression for tr(B’'MAMB)?.
In the spirit of the “unbiased” theme of this paper, we estimate d, in (15) by using unbiased
estimators for 0%, 0*7% and 7*, which we will now derive. With the subscript to m , denoting an

expression with @ Ms and b BB's, there holds

E(€é=xé) =

We additionally have

E(é + BB'&)

and

E(BB'¢ « BB'¢)

Then

H E(€®é)
= H'Me®M)vec(c’l, + 7°BB)
= o’H'vecM + "H'vecMBB'M

— 2 2
= O m10+T mzl.

= H' E(®BB'é)
= H'M®BB'M)vec(c’L + 7°BB)
= ¢’H'vecBB'M + 7°H'vecBB'MBB'M

— 2 2
= om, +7m,

= H E(BB'é @ BB'é)
= H'(BB'M ® BB'M)vec(c’I + 7°BB’)
= ¢*H'vecBB'MBB’ + 7’H’vecBB'M BB’'MBB’

— 2 2
= O m12 + 71 m23.

o/ A A A A
i E(€xExEx€)

i B(€ * € x BB'é » BB'é)

i E(BB'é « BB'é « BB'é « BB'€)

s/ 2 2 2 2
31 ((07m,, + 7°m,)) * (o7m ; + 7°m,)))
s/ 2 2 2 2
i ((0‘ m,) +7°'m, )*(c'my, + 7°m,,)
2 2 2 2
+2(c'm, + 7'm,,) x (c'm, + 7 mzz))

s/ 2 2 2 2
31 ((07m, + 7m,,) * (o7m,, + 7°my,)).

Solving the sample counterpart of this system readily leads to unbiased estimators for the three

parameters,

e/
31n(m10 * mlo)
X y

o/
3i,(m, xm,,))

with

=
Il

~<
M

./ o/
6i (m,«m, ) 3i (m, +m,)

o/ */
61n(m12 * m23) 31”(m23 * m23)

e a4
9 2,¢
™ 28

o/
1n(m10 * M, + 2m11 *m,,)

1Y

i(m+m, +m) «m,+4my +m,)

o/
i(m, +m,, +2m,, +m,,).

Efficient computation can be based on H'vecRS’ = (R * S)i, for R and S of order n X .
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Appendix C: Consistency in a simple setting

The simulations highlight that UV1 can offer a size correct test even with only a single treated
cluster, while UV2 and UV3 require a somewhat larger number of treated clusters. In this section,
we explore these findings from a theoretical perspective. We derive the conditions under which
the three variance estimators are consistent in a simple model that is rich enough to explain the
observed features from our simulations. We consider a setting with a single regressor, which is a
treatment dummy that is equal to one in 7, out of C clusters. The design is balanced, so that each
cluster contains n/C observations. With the definitions given in the paper, we then find

X'X=(n-1)/C, XX=@-1.)/C ()

We assume that the regression errors € ~ N(0, X). We take X as in Section 3.1, so that all variance
estimators are unbiased. Without changing the proof, we can take X as in Section 3.2 and show
consistency of UV2 and UV3. The relevant property of X is that its maximum eigenvalue satisfies
A (X) < M -n/C. This condition holds in the specifications of Section 3.1 and Section 3.2. In

max
this section M denotes a generic positive constant that can differ between appearances.

A sufficient condition for ¥/v -, 1 is that var(9)/v?> — 0. Note that this implies that the degrees
of freedom, defined as 2v?/var(), diverge. Using the expressions derived in Section 4, we have

var(9)/v? = 2tr(AMEMAMXEM)/v?
<M-A (P (XX) (A 3)
< M - (n/C)Ptr(AY),

where A is the block diagonal matrix with blocks A as given in Section 4 in the paper. We now
proceed to derive explicit expressions for tr(A?) for the variance estimators UV1-UV3.
UV1 From Section 4, we have that

A =rl +rji, (r.r)=FXXeXX) " (vecX'X, vecXX)¥! 4)
The matrix ¥ defined in Section 3.1 depends on the following quantities,

ii= Y /O =wIC, s=n/C. §=@m[CP. 3= (m/C).

Since sY¥ is a 2 X 2 matrix, its inverse is easily obtained as

\Pfl_l 1—I’l_l 1_C—1
“all-Cc @oa-ch
_1 1 n/C)1-CYH —(1-Ch
“n@/C-DA-cH\ -1-C 1t |

Then, using (2),

, -l _ L 1 o B
(vecX'X,vecX X)¥ ' = CoC == C“)(O’ t-(n/C=1)) =(0,1./(C = 1)).

8



Using (4), we find that 7, = 0 and r, = C*/(n* - (C — 1) - t,.). Hence,

2
tr(A%) = Z (A =C-r - (n/C) = <« ¢

tzn? (C - 1)?

Substituting this into (3), we find that

2
N n C
var(D)/v- < M - (—) .
)/ c) ©-1y
We conclude that for UV1 to be consistent, we require that the number of clusters grows sufficiently
fast to guarantee that n*/C> — 0. Importantly, consistency only depends on the number of clusters,
and not on the number of treated clusters 7.
UV2 Assume that the number of treated clusters 7. > 2. From Section 4, we have

A = +n i, @)= [XXeXX)! ) ((veeX/X e, (%, 8% ) )@ (5)

Note that in the definition of @ given in Section 3.2 the elements a_,, {_,, g, equal zero when one
of the clusters is untreated. As a result, we have

n_2 Liy n |2 i ¥
(c tc)Ifc + %ltcltc 0 c [ » Itc + %ltcltc 0
n n
0 CIC—tC 0 C C-t,
D= n tC—ZI i 1s o 0 (n)2 l‘C—ZI i 1s o 0
C| tc "t £ ltcltc C e “te 1% ltCltC
2
n n
0 CIC—ZC 0 (C) IC—IC

We can analytically invert this matrix by by rearranging it into a block diagonal matrix and first
invert the diagonal blocks that are formed by

n_2 1w fc22 Lsw
Bl _ ( 1 0 (C ZtC)ItC + zéltcltc fczlfc + [éllcltc 1 0
O n le— Y te— s o 0 n
C = Ifc + %ltcltc - Ifc + %llcltc C

and

. ( He, e, ] |

%IC—IC (%) IC—tC
The inverse of the first diagonal block is simplified by that fact that the upper right, lower left and
lower right blocks are identical. We obtain

-1 -1
B‘l—(l 0) (2-1) IIIC 1_(5_1) I
1= c " - " - ‘ I . .
0 N (E B 1) Izc ((E B 1) + tC_SZ)ItC T oD e 0
The inverse of the second block is

n n -1

B! = 5IC—tC EIC—tC 1 IC—tC _%IC—tC
R | (E)ZI - ¢ c
ctc-1. \c) ‘e,

—
sl O



Rearranging back into the original form of ®, we obtain

I 0 -£1, 0
c c c
o (n 1)‘1 0 IC—tC 0 _ZIC—tC
=\7" c n c\V((n -l Y,
C _;I’C 0 (E - 1)(;) [((E - 1) + tC_SZ)ItC - mltcltc] 0
C C
0 _ZIC—tC 0 ;IC—tC

Using that for the treated clusters X;XC =n/Cand X ®X = (n/C )%, we get that

t t
D ((veeX!X e, (% ®i)e’)<l)‘1:(0’c,( <__ ¢ )i;,og_[)
c“elTer Ve ¢’ e tC_z (tC_z)(tC_l) c c

- O/ tC i/ 0/
c’ fo— 1 100 " C-tp |

2 . . .
In (5) we now haver, =0 andr, = + (%) tt—f] if cluster c is treated and zero otherwise. Then,
C C

c

o =re(f] 50 o

Substituting this into (3) we conclude that

var(®)/v2 < M - (1)2 fc
- c/ .17
We conclude that UV2 is consistent for v when n?/(C? - t-) — 0. A necessary condition for this
to happen is that the number of treated clusters 7. — oo. This stands in marked contrast with the
finding for UV1 above.
UV3 Assume that 7., > 2.

A, =XQX, (vecQ) = f,(XX@XX+¥ S (XX ®XX)) s (6)
If cluster c is treated, we have § | = 1 —2/1,, while if cluster ¢ is not treated, we have § . = 1. Then,

XXoXX+Y S/'XX ®X'X) = 1.)"/C*+ 1/t~ 2)(n/C) = (%)2 b3

Then with A from (6), we find

2.t 1.-2 1 C?
(A% = > (A =1, - = 2 £ = :
A Z A = e e DR~ 2 il — 1)

Substituting this into (3), we conclude that

tC
(tc — D*

For consistency of UV3 we therefore require that n?/(C? - t) — 0. This is the same condition as
for UV2, so that again we require the number of treated clusters 7. — co.

var(P)/v? < M - (g)z
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