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A. More on the Theoretical Framework

Optimal Monetary Policy. Assume that the aggregate economy is best approxi-

mated by a standard New Keynesian model under the rational expectations hypothesis.,

i.e.,

xt = Etxt+1 − σ−1 (it − Etπt+1) + gt (A.1)

πt = βEtπt+1 + λxt + et. (A.2)

In this model, it denotes the nominal interest rate controlled by the central bank. β and

σ are structural parameters, λ is a composite term comprising several structural param-

eters. gt denotes an exogenous demand disturbance and et denotes an exogenous supply

disturbance. We assume gt ∼ iid(0, σ2
g), et ∼ iid(0, σ2

e) and σeg = 0.1

Consider optimal monetary policy under discretion (as elaborated in Clarida et al.,

1999). The central bank minimizes (1) subject to (A.2) in each period. The first-order

necessary condition is πt = −(ωx/λ)xt and one can show that, under this policy, the

model implies an inflation output variability tradeoff as first developed in Taylor (1979).

In particular, solving the model for given parameters implies a minimum state variable

solution πt = aπet and xt = axet, where aπ ≡ ωx/(ωx + λ2) and ax ≡ −λ/(ωx + λ2). This

implies the long-run relationships in unconditional variances (2) and (3).

1In the theoretical literature et is usually denoted a cost-push shock. Notice that allowing for auto-
correlation in the exogenous shocks would not alter any conclusion.
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Taylor (1993) rule. It is easy to verify that the model (A.1), (A.2) and (4) has

the solution πt = bπ,eet + bπ,ggt and xt = bx,eet + bx,ggt, where bπ,e ≡ (1 + σ−1ϕπλ)
−1,

bπ,g ≡ (1 + σ−1ϕπλ)
−1λ, bx,e ≡ −σ−1ϕπ/(1 + σ−1ϕπλ) and bx,g ≡ (1 + σ−1ϕπλ)

−1. This

solution implies the long-run relationships in unconditional variances given by (5) and (6).

Input-oriented TTF. Next we show that the input-oriented TTF provides us with

a functional form that captures the basic characteristics of an inflation output variability

tradeoff. Formally, one assumes that the relationship between the supply and demand

shock (as the M = 2 outputs, y) and the variances of inflation and output gap (as the

K = 2 inputs, z) can be described by Af(y, z) = 1, where we have M outputs y and K

inputs z. Moreover, A captures factors that affect the TTF neutrally. We will be more

specific about the assumptions further below. Next, we assume a translog functional form,

i.e.,

ln(f(y, z)) =
∑
m

αm ln(ym) +
1

2

∑
m

∑
n

αm,n ln(ym)× ln(yn)

+
∑
k

βk ln(zk) +
1

2

∑
k

∑
l

βk,l ln(zk)× ln(zl)

+
∑
m

∑
k

γm,k ln(ym)× ln(zk), (A.3)

where the following symmetry is imposed: βk,l = βl,k and γm,n = γn,m. Equation (A.3)

requires M +K + 2 additional identification, or, normalization restrictions. As discussed

in Kumbhakar (2012), it is possible to impose the restrictions such that a single equation

framework emerges that allows for simultaneous estimation of more than one endogenous

input (e.g., input-oriented) or output (e.g., output-oriented).

Since, in the case of the inflation output variability tradeoff, we have simultaneous

endogeneity of σ2
π and σ2

x, while σ2
e and σ2

g are exogenous, we can consider the former two

variances as inputs, while the latter two variances are the outputs. Therefore, we adopt a
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normalization with respect to an input. This gives rise to an input-oriented TTF. Following

Kumbhakar (2012), we rewrite (A.3) as

ln(f(y, z)) =
∑
m

αm ln(ym) +
1

2

∑
m

∑
n

αm,n ln(ym)× ln(yn)

+
∑
k

βk ln(zk/z1) +
1

2

∑
k

∑
l

βk,l ln(zk/z1)× ln(zl/z1)

+
∑
m

∑
k

γm,k ln(ym)× ln(zk/z1) + Υ,

where each input k has to be combined with the remaining inputs l as described in this

equation. Υ is a composite term that follows from writing the second and third line in

expression (A.3) in ratios (see, e.g., Kumbhakar, 2012, for the details).

Next we impose the normalization restrictions,
∑

k βk = 1,
∑

l βk,l = 0 ∀k, and,∑
k γm,k = 0 ∀m.2 As a consequence, the composite term Υ is eliminated and we ob-

tain the input-oriented TTF that we use as our empirical specification

− ln(z1) = α0 +
∑
m

αm ln(ym) +
1

2

∑
m

∑
n

αm,n ln(ym)× ln(yn)

+
∑
k=2

βk ln(zk/z1) +
1

2

∑
k=2

∑
l=2

βk,l ln(zk/z1)× ln(zl/z1)

+
∑
m

∑
k

γm,k ln(ym)× ln(zk/z1) + v,

where ln(A) = α0 + v. In this case we normalize our function on z1. We would get exactly

the same econometric results by normalizing the function on zk. In the particular case of

the inflation output variability tradeoff, we have y1 = σ2
e , y2 = σ2

g , z1 = σ2
x and z2 = σ2

π.

2The normalization restrictions imply homogeneity, symmetry and monotonicity properties of the TTF.
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B. Estimation of Structural Shocks

In order to derive our structural shocks we consider a vector autoregression with ex-

ogenous variables (VARX), whose reduced form of order p can be represented by

Yt =

p∑
i=1

AiYt−i + CXt + ut, (B.1)

where Yt is a 3× 1 vector of endogenous variables including a measure of the output gap,

inflation (as difference from target) and nominal interest rate. We consider all countries

with the exception of USA as open economies (for a more detailed discussion of this choice

see Favero and Giavazzi, 2008). Therefore, the models for the other countries in the sam-

ple include Xt, which is a 3 × 1 vector of exogenous variables including US output gap,

inflation (as difference from target) and a nominal interest rate, aimed at capturing the

world macroeconomic stance. ut ∼ N(0, Σu,t) is a vector of reduced-form disturbances with

E[ut] = 0 and E[utu
′
t] = Σu,t. ut is independently but not identically distributed across

time. Σu,t is time-varying, rendering volatility stochastic and introducing heteroskedastic-

ity. We model stochastic volatility as in Cogley and Sargent (2005). It is assumed that

Σu,t can be decomposed as

Σu,t = FΛtF
′
,

where F is a lower triangular matrix with ones on the main diagonal. Λt is a time-varying

diagonal matrix equal to (s1 exp(λ1,t), s2 exp(λ2,t), ...sn exp(λn,t)), where n is the number of

endogenous variables. s1, s2, ...sn are known scaling terms and λ1,t, λ2,t, ...λn,t are dynamic

processes generating the heteroskedasticity that are characterized by the autoregressive
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process

λi,t = γλi,t−1 + νi,t νi,t ∼ N(0, ϕi).

The parameters to be estimated are: the parameters of the reduced form VAR, the elements

of the F matrix, the dynamic coefficients λi,t and the heteroskedasticity parameters ϕi.

With regard to the priors, for Ai, C and covariance matrix Ω0 we adopt classical Minnesota

priors. Considering the inverse of F , that is, F−1 we adopt a multinormal diffuse prior

with mean f−1
i0 (which is set as a vector of zeros) and covariance diagonal matrix Υi0 with

large diagonal entries. The prior for π(λi | ϕi) are not simple to formulate since each term

λi,t depends on its previous value. The solution to this problem is given by separating

π(λi | ϕi) into T different priors, with prior in each period t conditional on period t − 1.

To obtain the conditional posterior for ϕi, the previous prior will be combined with a joint

prior for λi,1, ..., λi,T , since the joint formulation is faster for ϕi. We make 5000 draws of

which the first 1000 are discarded as burn in draws.

The identification structural shocks requires to impose restrictions. Our preferred choice

in this paper are sign restrictions. Uhlig (2005) and others, show how to obtain identifi-

cation of the above VAR (B.1) by imposing sign restrictions on a (sub)set of the variables

responses to shocks as discussed in the main text. An advantage of this procedure is that

only a minimum amount of economically meaningful sign restrictions are required in order

to identify the structural shocks.

In case of a single shock, Uhlig (2005) shows that any impulse vector a can be recovered

if there is an n−dimensional vector q of unit length such that a = Ãq, where Ã is the

Cholesky factor of Σu,t. More precisely, starting with estimation of the above reduced

form model, identification of a single shock by sign restrictions can be obtained as follows:

1. derive the impulse-responses for the n variables corresponding to a given impulse
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vector aj up to period f on which sign restrictions are intended to be imposed;

2. draw an n−dimensional q vector of independent N(0, 1) and divide it by its norm,

obtaining a candidate draw q from which an impulse vector aj = Aq can be derived

for then calculating the corresponding impulse responses;

3. if the resulting impulse responses meet the sign restrictions imposed accept the draw,

otherwise discard it;

4. repeat 2 and 3 until a desired number of accepted draws is obtained.

For robustness purposes we also consider zero short run restrictions via Cholesky de-

composition of Σ. Exact identification requires that (n2−n)/2 restrictions must be placed

between the regression residuals and structural innovations. Given that the Cholesky

decomposition is triangular, it forces exactly (n2 − n)/2 elements of the matrix of con-

temporaneous relationships to be zero. The resulting recursive structure impose a causal

ordering on the variables in the VAR: shocks to one equation contemporaneously affect

variables below that equation but only affect variables above that equation with a lag.

With this interpretation in mind, the causal ordering one chooses reflects his beliefs about

the relationships among variables in the VAR.

C. Details on the Interpretation of Coefficient Estimates

β̂2: Ignore all other terms in (9) except for the one involving β̂2, thus

− ln(σ2
x,i,t) = β̂2 ln(σ

2
π,i,t/σ

2
x,i,t) = β̂2

[
ln(σ2

π,i,t)− ln(σ2
x,i,t)

]
⇔ ln(σ2

x,i,t) = [β̂2/(−1 + β̂2)] ln(σ
2
π,i,t),

where β̂2 ∈ [0, 1) implies that [β̂2/(−1+ β̂2)] < 0, i.e., a higher inflation variability implies a

lower output variability. An estimate of β̂2 ∈ [0, 1) significantly different from zero already

implies a non-linear inflation output variability tradeoff. The equation is linear in the
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natural logarithms of variances. However, if we apply exp(·) on both sides, one can see

that the relationship between the variances in inflation and output is non-linear and convex

as suggested by economic theory.

α̂e: Ignore all other terms in (9) apart from the ones involving α̂e and β̂2, thus

− ln(σ2
x,i,t) = α̂e ln(σ

2
e,i,t) + β̂2 ln(σ

2
π,i,t/σ

2
x,i,t)

⇔ ln(σ2
x,i,t) = [α̂e/(−1 + β̂2)] ln(σ

2
e,i,t) + [β̂2/(−1 + β̂2)] ln(σ

2
π,i,t)

⇔ ln(σ2
π,i,t) = −[α̂e/β̂2] ln(σ

2
e,i,t) + [(−1 + β̂2)/β̂2] ln(σ

2
x,i,t)

and, as α̂e < 0 and β̂2 ∈ [0, 1), it follows that [α̂e/(−1 + β̂2)],−[α̂e/β̂2] > 0. We conclude

from the equations above that the relationship between the variance of the supply shock

and the variances of the output gap and inflation is positive, which is consistent with the

economic theory discussed above. The same arguments and conclusions apply to α̂g < 0.

β̂E : Similar arguments as above, yield

ln(σ2
x,i,t) = [α̂e/(−1 + β̂2)] ln(σ

2
e,i,t) + [α̂g/(−1 + β̂2)] ln(σ

2
g,i,t)

+ [β̂2/(−1 + β̂2)] ln(σ
2
π,i,t) + [β̂E/(−1 + β̂2)]Ei,t

ln(σ2
π,i,t) = −[α̂e/β̂2] ln(σ

2
e,i,t)− [α̂g/β̂2] ln(σ

2
g,i,t) + [(−1 + β̂2)/β̂2] ln(σ

2
x,i,t)− [β̂E/β̂2]Ei,t,

and, as β̂E < 0 and β̂2 ∈ [0, 1), it follows that [β̂E/(−1 + β̂2)],−[β̂E/β̂2] > 0. Therefore, a

significant coefficient estimate β̂E < 0 is interpreted as a deterioration of the tradeoff.
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D. Further Robustness

Herein we present further robustness checks:

1. Alternative shadow rate. The literature has proposed several measures of the shadow

rate with different characteristics. However, there is no consensus yet on how to

compute the shadow rate. Therefore we assess robustness of our results by computing

the structural shocks with the shadow rate provided by Krippner (2013, 2015). Tables

8 and 9 show that these results are fully in line with our main findings.

2. Considering financial instability. Financial instability has played an important role

during the considered sample period, especially in the recent past. Therefore we

carried out a robustness exercise, where we augmented our baseline VAR for the

computation of the structural shocks with Ahir et al.’s (2023) financial stress index

based on text analysis. Their index covers almost our entire sample but ends already

in 2018Q4. The latter implies that period 10 includes 11 observations from 2016Q2

to 2018Q4 instead of 15 observations. Tables 10 and 11 show that our results are

robust to including a financial stress index in the computation of structural shocks.
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Table 8: Estimated parameters for all countries, core and periphery for DiD model.a Observations are based on the Hamilton (2018) filter.
Shocks are identified with sign restrictions. Wu and Xia (2016) shadow rate replaced by Krippner (2013, 2015) shadow rate.

Variables Coefficient Estimatesb

(9) (11)

All Core Periphery All Core Periphery

Ei,t βE -0.672** -0.633** -0.729**
(0.254) (0.295) (0.327)

Ei,T0 βE,0 -0.602* -0.685** -0.437
(0.289) (0.326) (0.391)

Ei,T0+1 βE,1 -0.446 -0.709 -0.111
(0.375) (0.491) (0.365)

Ei,T0+2 βE,2 -0.823* -0.741 -0.908
(0.405) (0.449) (0.529)

Ei,T0+3 βE,3 -1.157*** -1.089*** -1.216***
(0.345) (0.373) (0.400)

Ei,T0+4 βE,4 -0.672* -0.261 -1.476***
(0.337) (0.387) (0.255)

Ei,T0+5 βE,5 -0.274 -0.322 -0.338
(0.278) (0.212) (0.633)

ln(σ2
e,i,t) αe -0.452*** -0.453*** -0.475*** -0.443***

(0.084) (0.083) (0.086) (0.089)

ln(σ2
g,i,t) αg -0.178 -0.183 -0.147 -0.172

(0.107) (0.114) (0.107) (0.112)

ln(σ2
e,i,t)× ln(σ2

g,i,t) αeg 0.201 0.198 0.189 0.100
(0.156) (0.158) (0.153) (0.162)

ln(σ2
e,i,t)

2 αee -0.301** -0.300** -0.259* -0.274**
(0.109) (0.110) (0.125) (0.125)

ln(σ2
g,i,t)

2 αgg -0.166 -0.168 -0.148 -0.097
(0.113) (0.114) (0.125) (0.135)

ln(σ2
π,i,t/σ

2
x,i,t) β2 0.541*** 0.540*** 0.565*** 0.531***

(0.026) (0.026) (0.033) (0.037)

ln(σ2
π,i,t/σ

2
x,i,t)

2 β2,1 -0.036 -0.035 -0.022 0.012
(0.022) (0.024) (0.020) (0.028)

ln(σ2
e,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,e 0.030 0.028 0.022 -0.004

(0.045) (0.044) (0.047) (0.045)

ln(σ2
g,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,g -0.144** -0.142** -0.142** -0.098

(0.062) (0.064) (0.063) (0.067)

Country fixed effect yes yes yes yes
Time fixed effect yes yes yes yes

N 20 20 20 20
Number of observations 200 200 200 200
R2 0.845 0.845 0.851 0.863

Specification testsc:
Ramsey (1969) Reset 0.188 0.171 0.243 0.252
βE,−3 = βE,−2 = βE,−1 = 0 0.748 0.562
βE,0 = βE,1 = · · · = βE,5 = 0 0.005 0.000

a The dependent variable is the variance of the output gap, i.e., − ln(σ2
x,i,t).

b ***p<0.01; **p<0.05; *p<0.10; Standard errors are in parentheses (cluster-robust standard errors, robust to serial correlation and heteroskedasticity).
c p-values are reported for all tests.



Table 9: Estimated parameters for all countries, core and periphery for LDV model.a Observations are based on the Hamilton (2018) filter.
Shocks are identified with sign restrictions. Wu and Xia (2016) shadow rate replaced by Krippner (2013, 2015) shadow rate.

Variables Coefficient Estimatesb

(12) (13)

All Core Periphery All Core Periphery

Ei,t βE -0.614*** -0.383** -0.853***
(0.198) (0.169) (0.232)

Ei,T0 βE,0 -0.698** -0.616* -0.611
(0.328) (0.296) (0.377)

Ei,T0+1 βE,1 -0.457 -0.546* -0.234
(0.315) (0.285) (0.413)

Ei,T0+2 βE,2 -0.531* -0.211 -0.843**
(0.290) (0.282) (0.328)

Ei,T0+3 βE,3 -1.041*** -0.810** -1.270***
(0.293) (0.335) (0.280)

Ei,T0+4 βE,4 -0.741** -0.179 -1.865***
(0.305) (0.277) (0.217)

Ei,T0+5 βE,5 -0.146 -0.174 -0.349
(0.346) (0.293) (0.541)

ln(σ2
e,i,t) αe -0.409*** -0.427*** -0.420*** -0.377***

(0.075) (0.081) (0.085) (0.086)

ln(σ2
g,i,t) αg -0.487*** -0.471*** -0.480** -0.495***

(0.151) (0.146) (0.176) (0.155)

ln(σ2
e,i,t)× ln(σ2

g,i,t) αeg 0.155 0.149 0.205 0.098
(0.246) (0.245) (0.216) (0.208)

ln(σ2
e,i,t)

2 αee -0.235* -0.236 -0.201 -0.222
(0.129) (0.138) (0.145) (0.159)

ln(σ2
g,i,t)

2 αgg -0.289*** -0.320*** -0.305** -0.271**
(0.099) (0.091) (0.113) (0.110)

ln(σ2
π,i,t/σ

2
x,i,t) β2 0.599*** 0.588*** 0.633*** 0.578***

(0.044) (0.048) (0.048) (0.054)

ln(σ2
π,i,t/σ

2
x,i,t)

2 β2,1 0.002 -0.005 0.026 0.073
(0.033) (0.032) (0.035) (0.044)

ln(σ2
e,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,e 0.054 0.049 0.052 0.007

(0.041) (0.041) (0.045) (0.032)

ln(σ2
g,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,g -0.059 -0.058 -0.046 0.028

(0.068) (0.069) (0.070) (0.064)

Country fixed effect no no no no
Time fixed effect yes yes yes yes

N 20 20 20 20
Number of observations 120 120 120 120
R2 0.881 0.886 0.889 0.913

Specification testsc:
Ramsey (1969) Reset 0.123 0.062 0.242 0.269
βE,−3 = βE,−2 = βE,−1 = 0
βE,0 = βE,1 = · · · = βE,5 = 0

a The dependent variable is the variance of the output gap, i.e., − ln(σ2
x,i,t).

b ***p<0.01; **p<0.05; *p<0.10; Standard errors are in parentheses (cluster-robust standard errors, robust to serial correlation and heteroskedasticity).
c p-values are reported for all tests.



Table 10: Estimated parameters for all countries, core and periphery for DiD model.a Observations are based on the Hamilton (2018) filter.
Shocks are identified with sign restrictions. The VAR is augmented with Ahir et al.’s (2023) financial stress index.

Variables Coefficient Estimatesb

(9) (11)

All Core Periphery All Core Periphery

Ei,t βE -0.503** -0.423 -0.614*
(0.238) (0.284) (0.303)

Ei,T0 βE,0 -0.502* -0.549 -0.358
(0.281) (0.326) (0.355)

Ei,T0+1 βE,1 -0.350 -0.553 -0.078
(0.307) (0.418) (0.319)

Ei,T0+2 βE,2 -0.592 -0.466 -0.763
(0.348) (0.358) (0.466)

Ei,T0+3 βE,3 -0.971*** -0.890** -1.048**
(0.323) (0.329) (0.414)

Ei,T0+4 βE,4 -0.588 -0.113 -1.449***
(0.374) (0.383) (0.308)

Ei,T0+5 βE,5 0.017 -0.026 -0.071
(0.327) (0.394) (0.563)

ln(σ2
e,i,t) αe -0.405*** -0.406*** -0.427*** -0.407***

(0.072) (0.071) (0.081) (0.089)

ln(σ2
g,i,t) αg -0.299** -0.310** -0.275** -0.279**

(0.112) (0.114) (0.115) (0.111)

ln(σ2
e,i,t)× ln(σ2

g,i,t) αeg 0.195* 0.192* 0.185 0.144
(0.108) (0.110) (0.107) (0.113)

ln(σ2
e,i,t)

2 αee -0.364*** -0.361*** -0.325*** -0.356***
(0.104) (0.109) (0.097) (0.110)

ln(σ2
g,i,t)

2 αgg -0.090 -0.093 -0.086 -0.041
(0.084) (0.083) (0.098) (0.090)

ln(σ2
π,i,t/σ

2
x,i,t) β2 0.580*** 0.576*** 0.593*** 0.559***

(0.033) (0.034) (0.039) (0.041)

ln(σ2
π,i,t/σ

2
x,i,t)

2 β2,1 -0.008 -0.007 -0.004 0.030
(0.030) (0.028) (0.024) (0.026)

ln(σ2
e,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,e 0.039 0.036 0.029 0.002

(0.046) (0.046) (0.044) (0.044)

ln(σ2
g,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,g -0.064 -0.063 -0.070 -0.031

(0.061) (0.059) (0.058) (0.046)

Country fixed effect yes yes yes yes
Time fixed effect yes yes yes yes

N 20 20 20 20
Number of observations 200 200 200 200
R2 0.861 0.861 0.868 0.880

Specification testsc:
Ramsey (1969) Reset 0.055 0.043 0.071 0.236
βE,−3 = βE,−2 = βE,−1 = 0 0.769 0.151
βE,0 = βE,1 = · · · = βE,5 = 0 0.011 0.004

a The dependent variable is the variance of the output gap, i.e., − ln(σ2
x,i,t).

b ***p<0.01; **p<0.05; *p<0.10; Standard errors are in parentheses (cluster-robust standard errors, robust to serial correlation and heteroskedasticity).
c p-values are reported for all tests.



Table 11: Estimated parameters for all countries, core and periphery for LDV model.a Observations are based on the Hamilton (2018) filter.
Shocks are identified with sign restrictions. The VAR is augmented with Ahir et al.’s (2023) financial stress index.

Variables Coefficient Estimatesb

(12) (13)

All Core Periphery All Core Periphery

Ei,t βE -0.533** -0.366** -0.727**
(0.196) (0.173) (0.261)

Ei,T0 βE,0 -0.703** -0.658** -0.582
(0.307) (0.280) (0.353)

Ei,T0+1 βE,1 -0.443 -0.515 -0.230
(0.316) (0.308) (0.413)

Ei,T0+2 βE,2 -0.335 -0.110 -0.694**
(0.285) (0.339) (0.325)

Ei,T0+3 βE,3 -0.865** -0.749* -1.003***
(0.319) (0.375) (0.350)

Ei,T0+4 βE,4 -0.750** -0.224 -1.732***
(0.307) (0.301) (0.178)

Ei,T0+5 βE,5 -0.053 -0.137 -0.182
(0.304) (0.293) (0.528)

ln(σ2
e,i,t) αe -0.393*** -0.397*** -0.391*** -0.372***

(0.101) (0.098) (0.099) (0.099)

ln(σ2
g,i,t) αg -0.523*** -0.503*** -0.565*** -0.492**

(0.135) (0.136) (0.167) (0.177)

ln(σ2
e,i,t)× ln(σ2

g,i,t) αeg 0.450*** 0.470*** 0.489*** 0.499**
(0.150) (0.158) (0.159) (0.186)

ln(σ2
e,i,t)

2 αee -0.402*** -0.397*** -0.354*** -0.421**
(0.125) (0.124) (0.121) (0.154)

ln(σ2
g,i,t)

2 αgg -0.332*** -0.376*** -0.382*** -0.351**
(0.103) (0.109) (0.127) (0.131)

ln(σ2
π,i,t/σ

2
x,i,t) β2 0.623*** 0.609*** 0.626*** 0.578***

(0.050) (0.050) (0.053) (0.049)

ln(σ2
π,i,t/σ

2
x,i,t)

2 β2,1 0.036 0.029 0.042** 0.075***
(0.023) (0.023) (0.018) (0.021)

ln(σ2
e,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,e 0.105*** 0.110*** 0.099** 0.078*

(0.035) (0.036) (0.037) (0.043)

ln(σ2
g,i,t)× ln(σ2

π,i,t/σ
2
x,i,t) γ2,g -0.075 -0.096 -0.088 -0.056

(0.076) (0.076) (0.075) (0.072)

Country fixed effect no no no no
Time fixed effect yes yes yes yes

N 20 20 20 20
Number of observations 120 120 120 120
R2 0.898 0.900 0.906 0.924

Specification testsc:
Ramsey (1969) Reset 0.430 0.305 0.162 0.302
βE,−3 = βE,−2 = βE,−1 = 0
βE,0 = βE,1 = · · · = βE,5 = 0

a The dependent variable is the variance of the output gap, i.e., − ln(σ2
x,i,t).

b ***p<0.01; **p<0.05; *p<0.10; Standard errors are in parentheses (cluster-robust standard errors, robust to serial correlation and heteroskedasticity).
c p-values are reported for all tests.
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