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1 Electroquasistatic Problem

The nonlinear electroquasistatic (EQS) problem in time domain reads

div (J) + div
(︃
∂D

∂t

)︃
= 0 t ∈ [0, T ], r ∈ Ω ; (1a)

J = σE t ∈ [0, T ], r ∈ Ω ; (1b)
D = εE t ∈ [0, T ], r ∈ Ω ; (1c)
E = − grad (ϕ) t ∈ [0, T ], r ∈ Ω ; (1d)
ϕ = ϕfixed t ∈ [0, T ], r ∈ Γe ; (1e)(︃

J +
∂D

∂t

)︃
· n = 0 t ∈ [0, T ], r ∈ Γm ; (1f)

ϕ = ϕ0 t = 0 , r ∈ Ω , (1g)

where J is the current density, D is the electric displacement field and E is the electric field. ϕ is the electric potential and σ and ε
represent the electric conductivity and permittivity, respectively. The time variable is denoted by t and the position vector by r. Ω is
the computational domain and T is the terminal simulation time. ϕfixed are the fixed voltages at the electrodes, Γe ̸= ∅, and n is the
unit vector at the magnetic boundaries, Γm = ∂Ω \ Γe. The initial condition at t = 0 is denoted by ϕ0. Eliminating J and E leads to

− div (σ grad (ϕ))− div
(︃

∂

∂t
(ε grad (ϕ))

)︃
= 0 t ∈ [0, T ], r ∈ Ω ; (2a)

ϕ = ϕfixed t ∈ [0, T ], r ∈ Γe ; (2b)(︃
−σ grad (ϕ)− ∂

∂t
(ε grad (ϕ))

)︃
· n = 0 t ∈ [0, T ], r ∈ Γm ; (2c)

ϕ = ϕ0 t = 0 , r ∈ Ω . (2d)

2 Sensitivities of the Nonlinear Electroquasistatic Problem

Sensitivities describe how a given quantity of interest (QoI), G(ϕ(p), p), is influenced by a design parameter, p, i.e. dG
dp (p0), where

p0 is the currently active parameter value. In the following, two approaches for computing sensitivities of nonlinear EQS problems
are presented, namely the direct sensitivity method (DSM) and the adjoint variable method (AVM). The derivations will focus on
parameters that influence the material characteristics, i.e. σ(E(p), p) and ε(E(p), p).

2.1 Direct Sensitivity Method for the Electroquasistatic Problem

One of the most common methods for sensitivity computation is the DSM [1]. For the DSM, the sensitivity is written in more detail
using the chain rule,

dG
dp (p0) =

∂G

∂p
(ϕ(p0), p0) +

∂G

∂ϕ
(ϕ(p0), p0)

dϕ
dp (p0) , (3)

where the sensitivity of the electric potential, dϕ
dp (p0), is generally unknown. The DSM computes this unknown term by solving the

linear sensitivity formulation, i.e. the derivative of (1) to p. The sensitivity formulation for nonlinear EQS problems in time domain
reads

div
(︃dJ

dp

)︃
+ div

(︃
∂

∂t

dD
dp

)︃
= 0 t ∈ [0, T ], r ∈ Ω ; (4a)

dJ
dp =

∂σ

∂p
E + σd

dE
dp t ∈ [0, T ], r ∈ Ω ; (4b)

dD
dp =

∂ε

∂p
E + εd

dE
dp t ∈ [0, T ], r ∈ Ω ; (4c)

dE
dp = − grad

(︃dϕ
dp

)︃
t ∈ [0, T ], r ∈ Ω ; (4d)

dϕ
dp = 0 t ∈ [0, T ], r ∈ Γe ; (4e)
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(︃dJ
dp +

∂

∂t

dD
dp

)︃
· n = 0 t ∈ [0, T ], r ∈ Γm ; (4f)

dϕ
dp =

dϕ0

dp t = 0 , r ∈ Ω , (4g)

with the differential material tensors [2]

σd(E) = σ(E)1+E 2
dσ
dE2

(E)ET ,

εd(E) = ε(E)1+E 2
dε
dE2

(E)ET ,

where E is the absolute value of the electric field strength and 1 is the identity tensor. Eliminating dJ
dp , dE

dp and dD
dp brings up

− div
(︃
σd grad

(︃dϕ
dp

)︃)︃
− div

(︃
∂

∂t

(︃
εd grad

(︃dϕ
dp

)︃)︃)︃
(5a)

= − div
(︃
∂σ

∂p
E

)︃
− div

(︃
∂

∂t

(︃
∂ε

∂p
E

)︃)︃
t ∈ [0, T ], r ∈ Ω ;

dϕ
dp = 0 t ∈ [0, T ], r ∈ Γe ; (5b)(︃

−σd grad
(︃dϕ
dp

)︃
− ∂

∂t

(︃
εd grad

(︃dϕ
dp

)︃)︃)︃
· n (5c)

=

(︃
−∂σ

∂p
E − ∂

∂t

(︃
∂ε

∂p
E

)︃)︃
· n t ∈ [0, T ], r ∈ Γm ;

dϕ
dp =

dϕ0

dp t = 0 , r ∈ Ω , (5d)

where σd(p0), εd(p0), ∂J
∂p

(p0), dϕ0
dp (p0) and ∂D

∂p
(p0) are evaluated at the active parameter value p0.

2.2 Adjoint Method for the Electroquasistatic Problem

The first step in deriving the adjoint formulation is a modified notation of the QoI. Since the derivation of the adjoint formulation
requires partial integration in space and time, the QoI is written in terms of a functional, g, that is integrated over the spatial and
temporal computational domain [3, 4], i.e.,

G(ϕ(p), p) =

∫︂ T

0

∫︂
Ω

g(ϕ(p), r, t, p) dΩdt

Furthermore, the QoI is extended by substracting the EQS equation multiplied by a test function, w(r, t), i.e.

G(ϕ(p), p) =

∫︂ T

0

∫︂
Ω

g(ϕ(p), r, t, p) dΩdt

−
∫︂ T

0

∫︂
Ω

w div
(︃
J(p) +

∂D

∂t
(p)

)︃
⏞ ⏟⏟ ⏞

(1a)
= 0

dΩdt . (6)

The sensitivity of the extended QoI reads

dG
dp (p0) =

∫︂ T

0

∫︂
Ω

∂g

∂p
(ϕ(p0), r, t, p0) + ∂g

∂ϕ
(ϕ(p0), r, t, p0)dϕdp (p0) dΩdt⏞ ⏟⏟ ⏞

=: 1O
−
∫︂ T

0

∫︂
Ω

w div
(︃dJ

dp (p0)

)︃
dΩdt⏞ ⏟⏟ ⏞

=: 2O

−
∫︂ T

0

∫︂
Ω

w div
(︃

∂

∂t

(︃dD
dp (p0)

)︃)︃
dΩdt⏞ ⏟⏟ ⏞

=: 3O

.

(7)

Here dϕ
dp (p0), dJ

dp (p0) and dD
dp (p0) are unknown, however dJ

dp (p0) and dD
dp (p0) can be expressed by means of dϕ

dp (p0). The goal is to
factor dϕ

dp (p0) out and choose w such that all unknown terms vanish.
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From now on, the evaluation at p0 is omitted for the sake of readability. First, the second integral 2O is unravelled. This is done by
repeatedly applying integration by parts and equation (4), i.e.,

2O = −
∫︂ T

0

∫︂
Ω

w div
(︃dJ

dp

)︃
dΩdt

=

∫︂ T

0

∫︂
Ω

grad (w) · dJdp dΩdt−
∫︂ T

0

∮︂
∂Ω

w
dJ
dp · dSdt (8)

(4b),(4d)
=

∫︂ T

0

∫︂
Ω

grad (w) · ∂σ
∂p

E dΩdt−
∫︂ T

0

∫︂
Ω

grad (w) · σd grad
(︃dϕ
dp

)︃
dΩdt (9)

−
∫︂ T

0

∮︂
∂Ω

w
dJ
dp · dSdt

=

∫︂ T

0

∫︂
Ω

grad (w) · ∂σ
∂p

E dΩdt−
∫︂ T

0

∮︂
∂Ω

w
dJ
dp · dSdt (10)

+

∫︂ T

0

∫︂
Ω

div (σd grad (w))
dϕ
dp dΩdt−

∫︂ T

0

∮︂
∂Ω

dϕ
dpσd grad (w) · dSdt .

Second, the third integral 3O is investigated. The differential operator is shifted from ∂
∂t

(︂
dD
dp

)︂
to the test function, w, using integration

by parts,

3O = −
∫︂ T

0

∫︂
Ω

w div
(︃

∂

∂t

(︃dD
dp

)︃)︃
dΩdt (11)

=

∫︂ T

0

∫︂
Ω

grad (w) · ∂

∂t

(︃dD
dp

)︃
dΩdt−

∫︂ T

0

∮︂
∂Ω

w
∂

∂t

(︃dD
dp

)︃
· dSdt . (12)

Integration by parts in time removes the time derivative from dD
dp , i.e.,

3O =

∫︂
Ω

grad (w) · dDdp dΩ
⃓⃓⃓⃓
t=T

−
∫︂
Ω

grad (w) · dDdp dΩ
⃓⃓⃓⃓
t=0

(13)

−
∫︂ T

0

∫︂
Ω

∂

∂t
( grad (w)) · dDdp dΩdt−

∫︂ T

0

∮︂
∂Ω

w
∂

∂t

(︃dD
dp

)︃
· dSdt ,

where the integral evaluated at t = 0 is given through the sensitivity of the initial condition (4g). Since the goal is to factor out dϕ
dp

and dD
dp implicitly contains dϕ

dp , the third integral of (13) is unravelled further. Inserting (4c) and integrating by parts yields

−
∫︂ T

0

∫︂
Ω

∂

∂t
( grad (w)) · dDdp dΩdt (14)

= −
∫︂ T

0

∫︂
Ω

∂

∂t
( grad (w))

(︃
∂ε

∂p
E − εd grad

(︃dϕ
dp

)︃)︃
dΩdt (15)

= −
∫︂ T

0

∫︂
Ω

∂

∂t
( grad (w)) · ∂ε

∂p
E + div

(︃
εd

∂

∂t
( grad (w))

)︃ dϕ
dp dΩdt (16)

+

∫︂ T

0

∮︂
∂Ω

εd
∂

∂t
( grad (w))

dϕ
dp · dSdt .

The boundary integrals occurring in 2O and 3O can be simplified using (4e) and (4f), i.e.

−
∫︂ T

0

∮︂
∂Ω

σd grad (w)
dϕ
dp · dSdt (4e)

= −
∫︂ T

0

∫︂
Γm

σd grad (w)
dϕ
dp · dSdt ; (17)∫︂ T

0

∮︂
∂Ω

εd
∂

∂t
( grad (w))

dϕ
dp · dSdt (4e)

=

∫︂ T

0

∫︂
Γm

εd
∂

∂t
( grad (w))

dϕ
dp · dSdt ; (18)

−
∫︂ T

0

∮︂
∂Ω

w

(︃dJ
dp +

∂

∂t

(︃dD
dp

)︃)︃
· dSdt (4f)

= −
∫︂ T

0

∫︂
Γe

w

(︃dJ
dp +

∂

∂t

(︃dD
dp

)︃)︃
· dSdt . (19)
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The sensitivity can now be written as

dG
dp =

∫︂ T

0

∫︂
Ω

∂g

∂p
+ grad (w) · ∂σ

∂p
E − ∂

∂t
( grad (w)) · ∂ε

∂p
E dΩdt

+

∫︂ T

0

∫︂
Ω

(︃
∂g

∂ϕ
+ div (σd grad (w))− div

(︃
εd

∂

∂t
( grad (w))

)︃)︃ dϕ
dp dΩdt

−
∫︂ T

0

∫︂
Γe

w

(︃dJ
dp +

∂

∂t

(︃dD
dp

)︃)︃
· dSdt

−
∫︂ T

0

∫︂
Γm

(︃
σd grad (w)− εd

∂

∂t
( grad (w))

)︃ dϕ
dp · dSdt

+

∫︂
Ω

grad (w) · dDdp dΩ
⃓⃓⃓⃓
t=T

−
∫︂
Ω

grad (w) · dDdp dΩ
⃓⃓⃓⃓
t=0

,

(20)

where all unknown terms are highlighted in red. These terms vanish, if the test function is chosen as the solution of the adjoint
problem,

− div (σd grad (w)) + div
(︃
εd

∂

∂t
( grad (w))

)︃
=

dg
dϕ , t ∈ [0, T ], r ∈ Ω ;

w = 0 , t ∈ [0, T ], r ∈ Γe ;

−(σd grad (w)− εd
∂

∂t
( grad (w)) · n = 0 , t ∈ [0, T ], r ∈ Γm ;

w = 0 , t = T , r ∈ Ω .

(21a)

(21b)

(21c)
(21d)

Finally, the sensitivity reduces to

dG
dp (p0) =

∫︂ T

0

∫︂
Ω

∂g

∂p
+ grad (w) · ∂σ

∂p
E − ∂

∂t
( grad (w)) · ∂ε

∂p
E dΩdt

−
∫︂
Ω

grad (w) · dDdp dΩ
⃓⃓⃓⃓
t=0

.

(22)
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