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Appendix B: Model Validation 

We considered the validity of the selected 
model in six ways. First, we conducted a cross-
validation. The cross-validated correlation 
between the predicted, omitted observations 
and the FMWT Index was 0.90 (R2=0.82). The 
coefficients were consistent between time 
periods with all coefficients having a 
coefficient of variation of less than 10%, 
indicating stability in the model, and 8 of the 
10 having a coefficient of variation less than 
5% (Table 10).   

Second, we checked for adequate degrees of 
freedom. Partitioning the data into two subsets 
reduces the degrees of freedom and increases 
the risk of over-specification – that is, having 
too many coefficients for the available 
observations. As our rule of thumb, we desired 
to have degrees of freedom that were double 
the number of coefficients being estimated. 
Beginning with equation (1) through (4) we 
eliminated excluded covariates, determined 
the number of observations in each subset of 
the data, and checked for degrees of freedom 
in each. The selected model included two 
limiting factors, prior abundance and food 
availability in summer. Effectively this means 
the data were divided into two subsets with two 
separate equations being estimated. We 
checked the degrees of freedom for each 
equation.  

 Eliminating factors not included in the 
selected model, equations [1] to [4] become 

Am = Af   (9) 

Ar = Am M2 ƒ(Ep) ƒ(Ps)  (10) 

Aj = Min { [Ar],  [ɠ(FJA)] } (11) 

Ae = Aj   (12) 

When food availability in summer is 
limiting, we can substitute equation (11) into 
(12) to give  

Ae = ɠ(FJA) (13) 

This equation requires the estimation of 3 
coefficients for ɠ(FJA). Equation (13) was 
applied to 17 years of data, providing 13 
degrees of freedom. 

When food availability is not limiting, we 
can substitute equation (9) into (10) into (11) 
into (12) to give 

Ae = Af  M2 ƒ(Ep)  ƒ(Ps) (14) 

This equation requires the estimation of 6 
coefficients {3 for ƒ(Ep), 3 for ƒ(Ps)} and 1 
parameter. Equation (14) was applied to 22 
years of data leaving 14 degrees of freedom.  
In both cases the number of degrees of freedom 
met our criterion of being twice the number of 
parameters being estimated.  

Third, we considered other data to assess 
the plausibility of results. Power-plant 
operations were a potential concern because of 
the effects of entrainment, and both 
temperature and toxicity of discharged water 
(Matica and Sommer 2005). The two plants 
combined at maximum capacity could 
circulate 3,240 cfs or 10,500 acre feet of water 
per day (Matica and Sommer 2005). 
Entrainment of larval smelt (both delta smelt 
and longfin smelt) during one year (March 
1978-March 1979) were estimated to be 20.5 
million (+/- 5.6 million) at the Contra Costa 
Power Plant and 64.7 million (+/- 29.5 million) 
at the Pittsburg Power Plant for a total of 85 
million smelt larvae (Matica and Sommer 
2005). Due to difficulties in identifying young 
smelt, it was not possible to differentiate delta 
smelt larvae from longfin smelt larvae. For 
older smelt that could be identified, 100% and 
70%, were identified as delta smelt at Contra 
Costa Power Plant and Pittsburg Power Plant, 
respectively. Collectively, these data suggest 
that power plant operations may have 
regulated the population in the past. The model 
results  suggest   that  power  plant  operations
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Table 10   Coefficients of variation from the cross-validation analysis 

   β0   β1   β4  

Food Avail. (Jul-Aug) -2.5% 6.0% 9.6%  
Silversides Abundance 0.7% -1.4% 2.6%  
Power Plant Operations 4.2% -1.7% 3.4%  
Recruitment Parameter       3.0% 

 

have not regulated the delta smelt population 
since 1993.  

The abundance of predaceous Mississippi 
silversides in the estuary (see Figure 6c) has 
increased considerably; the species has 
displaced native species in other areas in the 
United States (USGS Fact Sheet 
https://nas.er.usgs.gov/queries/FactSheet.aspx
?SpeciesID=2903); delta smelt DNA was 
previously detected in 12.5% of silversides 
(Schreier et al. 2016) with a method that could 
detect delta smelt DNA up to 36 hours post 
ingestion (Baerwald et al. 2012), and the 
distribution of silversides appears to have 
shifted to the western Delta (Mahardja et al. 
2016), an area in which densities of delta smelt 
at certain times of the year are relatively high 
(Merz et al. 2011). Given that silversides are 
one of the more abundant non-native 
piscivores in the Delta and adjacent bay and 
marsh complex, it seems ecologically plausible 
that silversides may have a regulating effect on 
the species (Schreier et al. 2016). Although the 
model results suggest that silversides might 
affect the delta smelt population via predation 
during spring, given the negative correlation 
between abundance of silversides food 
availability in July and August of -0.56, the 
effect might also be manifested through 
competition for food. 

Fourth, we considered the plausibility of the 
shape of the response functions. Using the 
estimated coefficients from the model with the 
lowest AICc value, we graphed the estimated 
response functions (see equation (5a), (5b) and 

(5c)) for food availability (Figure 7a), power 
plant operations (Figure 7b) and abundance of 
silversides (Figure 7c). Our results suggest that 
food availability in July and August can be 
limiting over wide areas of the Delta, but that 
densities of 4,000 gC/m3 are necessary to 
sustain a FMWT index value of around 1,000. 
The shape of the response function for power 
plant operations seemed plausible with 
survival dropping off sharply at power 
generation levels above 500 MWH. The 
response function for silversides, however, did 
not seem ecologically plausible. Survey data 
(including STN survey data that were not 
utilized in the model) would lead one to expect 
a gradual s-shaped function, but instead the 
response curve declined rapidly above 
silversides abundances of 120 (see Figure 7c).  

Fifth, we correlated our predicted delta 
smelt seasonal abundances with survey returns 
from the Spring Kodiak Trawl (average 
February CPUE), the 20mm Survey (average 
June CPUE), and the Summer Tow-net Survey 
(average July CPUE) to see if the factors 
affecting abundance were incorporated in the 
correct life stages, recognizing that our life 
stages do not correspond exactly with survey 
data (Table 11). Correlations between the 
model and survey data generally were equal to 
or higher than correlations with the prior 
FMWT index.  

Sixth, we evaluated whether the timing of 
modeled life-stage impacts were consistent 
with the survey data. If the delta smelt 
abundance index value in one season is a good 
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Fig. 6  Historical delta smelt abundance-index values (Fall Mid-water Trawl Index, blue columns) 
and covariates that model outputs suggested may regulate the population: a. Food Availability Jul-
Aug, b. Power Plant operations, and c. Abundance of silversides (predation). Dark blue columns 
designate years in which the model indicates that each respective factor regulated abundance. 
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Fig. 7  Estimated associations between covariates and abundance or survival of delta smelt. Circles 
denote years when food availability in July and August was limiting, triangles denote years when 
energy generation at power plants was the primary factor regulating the population, and diamonds 
represent years when silversides were the primary factor regulating the population. Black solid 
lines represent response curves fitted by the model. (a) Relationship between food availability in 
July and August (from the zooplankton survey) and delta smelt abundance (from the FWMT 
Index). (b) Relation between power plant generation and survival of young delta smelt (as 
calculated by a ratio of the STN index/prior FMWT Index, scaled to fit the y axis). Red squares 
reflect drought years when delta smelt were likely not near the power plants. (c) Relation between 
silverside abundance and survival of young delta smelt. 
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Table 11   Correlations of model estimates with metrics of abundance of delta smelt at each life-
stage and with the prior FMWT Index.  

 Pre-spawning 
adults 

Recruits Sub-juveniles Sub-adults 

Metric SKT CPUE Feb 20 mm CPUE Jun STN Index FMWT Index 
Period 2002-2014 1995-2014 1995-2014 1995-2014 

Prior FMWT Index 0.92 0.71 0.76 0.43 
Model Estimate 0.92 0.87 0.74 0.92 

 

predictor of the index value in the next 
season, environmental factors likely have had 
little effect on population during that period. 
When the between-season variation is 
substantial it indicates that environmental 
factors have had comparatively greater 
influence in regulating the population during 
that period. A plausible model should include 
environmental factors in those life stages for 
which abundance metrics are not well 
correlated with abundance metrics in the 
previous life stage, and should not include 
factors where the abundance metrics are well 
correlated with abundance metrics of 
previous life stages. We identified life-stage 
transitions that likely were most strongly 
influenced by environmental factors (Table 
8). There appeared to be relatively little 
regulation of abundance by environmental 
factors in transitions from autumn to winter 
and from spring to summer. The model did 
not include covariates from these transitions.  
Winter to spring (adults to recruits) was more 
strongly regulated by environmental factors. 
The model with the lowest AICc value 
included two factors from this transition: 
energy generation by power plants and 
silversides abundance. The greatest variation 
in regulation by environmental factors was 
from summer to autumn. The model with the 
lowest AICc value included the limiting 
factor of food availability Jul-Aug. Based on 
the foregoing analyses, we concluded that the 
covariate stressors were generally associated 
with appropriate life stages. 

We concluded that the model with the 
lowest AICc value was statistically rigorous 
and explained much of the variation in the 
annual abundance of delta smelt over four 
decades. The covariates that were included 
were plausible ecologically, appeared to be 
associated with appropriate life stages and 
the (potential) magnitude of their impact on 
delta smelt abundance was supported by field 
data. The shape of the response functions was 
plausible for two of three covariates, but the 
response function for silversides included a 
threshold that may be implausibly abrupt. 
The inclusion of a model containing food 
availability in the spring, while not as 
statistically strong, seems more plausible 
ecologically.    
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Appendix C: Procedure Used to 
Conduct an Analysis to Identify 
Limiting Factors 
 
In developing a procedure to conduct an 
analysis to identify limiting factors for delta 
smelt, we drew from Rose et al. (2015) and 
Swannack et al. (2012).  Appendix A of Rose 
et al. (2015) provides detail on each of their 
steps. Note that several of the steps are 
associated with the development of a 
restoration plan in a public review process. 
Recognizing that these steps are important and 
appropriate, but beyond the scope of the work 
here, they have not been included below.     
The information in italics below briefly 
describes our implementation of each of the 
steps we employed – a synthesis from Rose et 
al. (2015) and Swannack et al. (2012). 
Reference to the Manuscript refers to: 
Hamilton and Murphy (2018).  Reference to a 
table or a figure with the prefix LFM is to an 
Excel file: LFM-no links.xlsx which we have 
made available at:  

https://www.dropbox.com/s/vt4qkq52t66e8ib/
LFM%20-%20no%20links.xlsx?dl=0 

Step 

1. Articulate the problem, objectives, and 
questions to be answered. 

Given that the “results of (prior) 
quantitative analyses of multiple 
environmental stressors on delta smelt 
have been inconsistent” our objective was 
“to explain variation and trend in a 
common abundance index for of delta 
smelt” (from the introduction of the 
manuscript) in order to aid the 
development of an effective management 
strategy that could provide sustained 
benefits to delta smelt. 

2. Review pertinent theory and literature, 
historical circumstances and previous 
studies.  

This was included in the manuscript as 
appropriate. Also see manuscript 
references.  

3. Create and unify conceptual ecological 
models. Summarize prior knowledge. 

We reviewed previous conceptual models 
but did not include that review in the 
manuscript. We then adapted the model of 
Moyle et al (2016). See: Figure LFM-2. 
See also Manuscript: Figure 2 and sections 
titled "Conceptual Ecological Model" and 
“Candidate Covariates and Model 
Structure”. 

4. From the conceptual model, and 
specifically the transition stages within the 
conceptual model, build a library of 
candidate quantitative models: 

a. We identified the transition stage for 
which the most reliable survey data 
exists to establish stock, selecting the 
Fall Mid-water Trawl Index.  In the 
Manuscript, refer to the third 
paragraph under conceptual 
ecological model for the basis of 
selection.  

b. We worked through each transition 
stage of the life cycle, identifying 
mechanistic factors affecting 
recruitment or survival, as relevant. In 
the Manuscript, see equations (1), (2), 
(3) and (4). 

c. We transformed the factors into 
covariates. 
i. Create a data inventory, 

documenting all the data.   
This was done in the workbook 
LFM.xlsx and preceding 
workbooks.  The data used in the 
analysis is presented in Table 
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LFM-14a. The data sources are 
documented in Table 1 in the 
Manuscript.   The derivation of 
these covariates is provided in 
Table 1 of the Manuscript.  The 
food availability covariates were 
calculated as follows: 

 The average biomass in each 
region in each month of each year 
was calculated using zooplankton 
survey data. See: e.g. Table LFM-
3a. To calculate biomass, we used 
the grams of carbon for each 
species listed in footnote [a] of 
Table 1 of the Manuscript.  

 To reflect access to prey (food) by 
region, we calculated for each 
region and month, the percentage 
of stations with abiotic factors, as 
recorded in the zooplankton 
survey, that fell within the attribute 
ranges listed in Table 2 of the 
Manuscript.  See e.g. Table LFM-
3b.  

 We calculated, for each region and 
month, what we call a "habitat 
suitability score," which is the 
product of the average biomass and 
the percentage of stations with 
suitable conditions. See e.g. Table 
LFM-3c. 

 Then we averaged scores across 
regions to calculate what we call a 
"capacity score" which is the value 
of the covariate used in the 
analysis. See the right-hand 
column in Table 3c.   

 This procedure was used for all 
months except spring (April-June), 
where the average was calculated 
only for Suisun Marsh, the 
Confluence and Lower Rivers 
regions, and the prey range was 
extended to include smaller prey 
items: calanoid copepodids and 
cyclopoid adults.   

ii. If data are not available for a factor, 
consider providing reasonable 
proxy variables or reasonable 
estimates of the factor.  
In the Manuscript, see narrative 
preceding each of equations (1)-(4) 

d. Graph the covariates against 
abundance or survival, where possible. 

See: Figure LFM-3, Graphs off 
individual covariates vs Abundance or 
Survival 

e. Check the covariates for correlation. 

See: Table LFM-14a Correlation 
among candidate covariates 
(Manuscript Table 3) 

Select the statistically most relevant 
food covariate to reduce the influence 
of correlations in the analysis. See 
Table LFM-14a (Table 4 in the 
Manuscript). Noted correlations when 
interpreting results.   

f. Articulate the hypothesized 
relationships between the covariates 
and abundance at each life stage as 
equations. 

We distinguished the factors that might 
limit the population potential versus 
factors that operate after a population 
potential been established (modifying 
factors). Our guidelines:  
 Prior population is a limiting 

factor. Food availability is a 
limiting factor – that is, if 
insufficient food is available, the 
population cannot be maintained. 
Habitat space could be a limiting 
factor, but with abundance indexes 
at record lows it is unlikely to be 
constraining abundance. Habitat 
space may be implicitly considered 
as diminishing access to food.   

 Anything that kills a portion of the 
population (as opposed to stressing 
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the whole population) is a 
modifying factor, e.g. entrainment, 
disease, or predation. 

 Abiotic environmental attributes 
are most likely modifying factors. 
Water temperature, if sufficiently 
high, could kill the entire 
population; however, due to 
occupancy by delta smelt of diverse 
and varying habitat niches and the 
wide variation in water 
temperature manifested across the 
estuary, the entire delta smelt 
population would not likely be 
simultaneously directly affected by 
elevated temperature. Should water 
temperature determine the extent of 
habitat then it could be a limiting 
factor.      

The hypothesized relationships are 
that each of the factors listed in 
Table 1 of the Manuscript has a 
strong statistical association with 
the FWMT Index, therefore can 
help explain variations in it.  We 
recognize that informatic theoretic 
analyses cannot be used to truly 
"test" hypotheses, but rather they 
provide inferences. 

5. Computerize the quantitative model:  

a. Identify, import, and check the data. 
See: Table LFM-14a Candidate 
Covariates. 

b. Incorporate the equations for each life 
stage into the quantitative model. 
See: Table LFM-15 Calculation of 
estimated FMWT Index and RSS. 

c. Set up the statistical calculations: RSS, 
TSS, R2, adj R2, AICc etc.  
See: Table LFM-15b Summary 
Statistics. 

d. Write up a draft of the methods to help 
catch logic errors. 

In the Manuscript, see "Methods". 

e. Verify the model. 

Checked formulas and data.  
In order to confirm whether Excel's 
nonlinear optimization routine was 
sufficiently precise, we checked a 
subset of the results against results 
using R. In the preferred model, no 
modifying factors alter the estimated 
abundance index values resulting from 
food availability limitations in Jul-Aug. 
By extracting the data for the 17 years 
in which Food Availability Jul-Aug 
was determined to be limiting, we could 
independently estimate the coefficients 
for equation [5c] that are reported on 
line [19] of the worksheet "Model." We 
found no difference in the estimated 
coefficients between R and Excel to 3 
decimal places.   

6. Run the analysis  

a. Develop reasonable starting values for 
the coefficients. 
These are inserted into the colored 
cells in Table LFM-15a. 

b. Run the analysis using non-linear 
optimization to minimize RSS. 
We activated the "solver" add-in in 
Excel. The objective function to be 
minimized is the RSS: cell I34 in 
worksheet model. We identified the 
cells to be changed - the coefficients to 
be estimated. In this version of the 
model these cells are shaded blue. It 
can be useful to add constraints, 
especially on minimal survival. These 
constraints may not actually constrain 
the coefficients; however, specifying 
those constraints prevents the 
optimization routine from producing a 
solution with negative survival. We 
uncheck the box below the constraints 
box labeled: Make unconstrained 
variables non-negative. 
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Under options, in the GRG Tab, we 
changed the default convergence 
precision from 0.0001 to 0.0000001. 
We activated the solution routine by 
clicking the solve button. If a feasible 
solution was not found, we modified the 
starting values. 

c. Graph the results. 
See: Figure LFM-7 Time Series of 
Estimated Versus Actual FMWT 
Abundance, Figure LFM-8 Scatter 
Diagram of Estimated Versus Actual 
FMWT Abundance. 

d. Check the results for reasonableness 
and obvious errors (e.g. calculation 
errors). 
This was done at the end of each model 
run, and again at the end of all runs.  

e. Check for global optimality.  
We re-ran models using different 
starting values to assess the stability of 
the solutions, and establish whether a 
lower AICc value could be found.   

f. If different functional forms (log, 
natural, quadratic, etc) are reasonably 
defensible, run the alternatives and see 
what provides the best fit, but do not let 
the best fit override theory. 
While simple linear models, rather 
than logistic functions [Manuscript 
equations (5a), (5b), (5c)], might be 
more efficient statistically for some life 
stages (that is, they can produce lower 
AICc values), for consistency and to 
reduce data mining, we maintained 
consistent functional forms.  

g. Sequentially omit covariates to see if 
any do not provide valuable 
information, as determined using the 
model-selection criteria. 
See: Worksheet "Results" (Tables 4 
and 5 of the Manuscript). 

h. Preserve the results of each run. 

See: Table LFM-16 Analysis of 
Contribution of Individual factors, 
Table LFM-17 Consequences of 
adding or deleting covariates to the 
preferred model, Table LFM-18 
Consequences of adding or deleting 
covariates to the March food model. 

i. Develop a set of best models using 
conventional statistical techniques.  
The selected model (the model with the 
lowest AICc) was model 30 in 
Manuscript Table 5 and was the base 
model in Table 6.  A model that also 
included food availability in March 
had the next lowest AICc value (2.9 
higher than the selected model).  (See 
Manuscript Table 6). 

7. Validate the best models. 
See Appendix B. 

a. Perform cross validation or other 
analyses. 
See: Table LFM-22b Cross-validation 
output. 

b. Check reality of results against data - 
are coefficients realistic? 
See: Figure LFM-9 Estimated 
associations between covariates and 
abundance or survival of delta smelt, 
Table LFM-24e Summary of 
Correlation between Model Estimates 
& Survey Results,Figure LFM-11 
Influence of the abundance of delta 
smelt in one life stage on abundance in 
a subsequent life stage from survey 
data. 

8. Perform sensitivity and uncertainty 
analyses.  

We checked model sensitivity by including 
and excluding covariates into or from the 
selected model (See Manuscript Table 6). 
We checked to see if models including food 
availability in both March and Jul-Aug 
could improve results. See Table LFM-18. 
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9. Select a preferred model based on the 
purpose (management relevance of the 
model), statistical strength, and ecological 
credibility.  

After reviewing the selected model from 
both an ecological and statistical 
perspective (see Appendix B), we 
considered Model 30 to be suitable for the 
purposes of this study. 
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