Total norbornene incorporation in polymer was calculated using equation:

Mol NB%=[$1/3(2I_{C7}+I_{C1/C4}+I_{C2/C3})/I_{CH2}]x100\%$

where: I_{CH2} , I_{C7} , $I_{C1/C4}$, $I_{C2/C3}$ are total area of the ¹³C NMR signal at 26-30, 30-36, 36-42 and 43-52 ppm.

For example, total areas of the signal assigned to the selected carbon atoms for copolymer with 35.3 mol% NB incorporation (Table 1, item 20) were:

Carbon atoms	CH2	C7	C1/C4	C2/C3
Total area	3.18	0.71	0.95	1.00

For all the calculations, total area of the signal assigned to the C2/C3 carbon atoms was taken as unit value. Thus:

Mol NB%=1/3[2×0.71+0.95+1]/3.18×100%=35.3%

Total 1-octene incorporation in polymer was calculated using total areas of the signal assigned to the selected carbon atoms according to equation:

where: CH (br) branches O1=(A+2C+2D)/2; α -carbons O2=[1,5A+2B+(D+E)-D]/3; average moles 1-octene O'=(O1+O2)/2; moles ethylene E'={[(F+G+H)-(3A+3B+H+J+I)]/2}+O',

where the regions of ¹³C NMR signals are: A (40.8-39.8 ppm), B (39.8-38.8 ppm), C (38.8-36.3 ppm), D (34.0-33.8 ppm), D+E (36.1-32.5 ppm), F+G+H (32.5-24.8 ppm), H (27.8-25.8 ppm), I (24.3-23.3 ppm), and J (23.3-21.3 ppm).

For example, total areas of the signal assigned to the selected regions for copolymer with 6.9 mol% 1-octene incorporation (Table 2, item 8) were:

Region	А	В	С	D	D+E	F+G+H	Н	Ι	J
(ppm)	(40.8-	(39.8-	(38.8-	(34.0-	(36.1-	(32.5-	(27.8-	(24.3-	(23.3-
	39.8)	38.8)	36.3)	33.8)	32.5)	24.8)	25.8)	23.3)	21.3)
Total	0.41	0.30	1.27	2.08	4.19	65.00	2.92	0.48	1.00
area									

For all the calculations, J area was taken as unit value. Thus:

O1=(0.41+2×1.27+2×2.08)=3.55

O'=(3.55+1.11)/2=2.33

E'=[65.00-(3×0.41+3×0.30+2.92+0.48+1.00)/2]+2.33=31.57

Thus:

Fig 1S. GPC traces of the copolymer samples: a, b) ethylene/norbornene (Table 1, items 17, 18, NB incorporation 18.6, 24.3mol%); c, d) ethylene/1-octene (Table 2, items 5, 8, Oct. incorporation 4.9, 6.9mol%).

SUPPLEMENTARY MATERIALS – Polymer Bulletin Copolymerization of ethylene with norbornene or 1-octene using supported ionic liquid systems Wioletta Ochędzan-Siodłak (wsiodlak@uni.opole.pl), Anna Bihun Faculty of Chemistry, University of Opole, Poland

SUPPLEMENTARY MATERIALS – Polymer Bulletin Copolymerization of ethylene with norbornene or 1-octene using supported ionic liquid systems Wioletta Ochędzan-Siodłak (<u>wsiodlak@uni.opole.pl</u>), Anna Bihun Faculty of Chemistry, University of Opole, Poland

Fig. 3S ¹³C NMR spectra of the ethylene/norbornene copolymer obtained using the homogeneous Cp_2VCl_2 catalyst, initial norbornene concentration – 1 mol/L.

SUPPLEMENTARY MATERIALS – Polymer Bulletin Copolymerization of ethylene with norbornene or 1-octene using supported ionic liquid systems Wioletta Ochędzan-Siodłak (<u>wsiodlak@uni.opole.pl</u>), Anna Bihun Faculty of Chemistry, University of Opole, Poland

Fig. 4S ¹³C NMR spectra of the ethylene/1-octene copolymer obtained using the SIL/Cp₂VCl₂ catalyst, initial 1-octene concentration -1 mol/L.

