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Supplementary material

Proof of the problem P1

If we set Eq. 11 to zero, we have

ngk
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=1

Which gives:
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Constantly necessary and sufficient condition for this equality to be realizable

is when:
Tmin < Zgpj < Trmax (30)
where:
Tmin = ij{ﬁnn“gipzij and Tyer = (IhaxX  UgipTi; for the subgoup p from the
=1,..., =1,...,

apriori group K
ng

Suppose that Z Ugip(Tij — 2gcj) > 0 the inequality becomes:

=1
g g g
Tmin Y gip (1) = 29G;) (% D ugiptis (i —2905) g) Tmaz Y Ugip(Tij —Zgc5)
=1 =1 =1
(31)
For the inequality (1):
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We get:
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For the inequality (2):

ng ng
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We get:
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So:
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Z?ﬁql ugiprj — Tmin Z:L:ql UgipLij xmaznngp - 2?21 “gipxzzj

Zgc; < min = —
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(37)
g
Suppose that Z Ugip(Tij — 2gcj) < 0 the inequality becomes:
i=1
Ng g ng
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i=1 i=1 i=1
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For the inequality (1):
g g
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i=1 i=1

We get:
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For the inequality (2):
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So:

7% Ng a2 Ng o2 . Ng . .

TmazNgXgp — D il UgipTi; >l UgipTij; — Tmin i UgipLij

ZgGj = max = , =
Ng(Tmaz — Xgp) ng(Xgp — Tmin)

(44)

To assure that z4q; is a solution for Eq. 11 it suffices to verify that z,c; meets

the following conditions:
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Description of the Data Generation Processes

This section aims to offer precise and clear definitions for each DGP, ensur-
ing understanding and clarity. It is essential to ensure a comprehensive
understanding of each DGP in order to facilitate accurate interpretation and

analysis of the generated data:

DGP 1: Two clusters were created by utilizing independent Gaussian
random variables. Cluster 1 has a mean value of 0 and a covariance matrix of
0.821,0, where Io represents the identity matrix of size 40. Cluster 2 shows a

mean of 0.1 and a covariance matrix of 0.9214.

DGP 2: Two distinct clusters were created using independent ran-

dom variables that had different distributions. Cluster 1 is formed from a
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Lognormal distribution that produces samples from a conventional normal
distribution with a mean of 0 and a covariance matrix of I45. Cluster 2 is

formed by applying the Pareto distribution with a shape parameter of 2.62.

DGP 3: Three clusters were created by utilizing independent Gaussian
random variables. Cluster 1 has a mean value of 0 and a covariance matrix of
0.7%21,49. Cluster 2 has a mean of 0.1 and a covariance matrix of 0.6%1,9, while

cluster 3 has a mean of 0.7 and a covariance matrix of 0.5 4.

DGP 4: Three distinct clusters were generated by using independent
random variables that had different distributions. Cluster 1 is generated
when samples from a Chi-Square distribution with a degree of freedom of
2 are drawn from a Lognormal distribution. Cluster 2 is produced when an
exponential distribution is utilized to represent the intervals between events
in a Poisson process with a scale of 1. Conversely, cluster 3 is generated using
a uniform distribution, which yields values that are uniformly distributed

within the range of 0 to 1.5.

DGP 5: Four clusters were created by utilizing independent Gaussian
random variables. Cluster 1 has a mean value of 0 and a covariance matrix
of Iy. Cluster 2 has a mean of 0.5 and a covariance matrix of the identity
matrix with dimensions 40. Cluster 3 has a mean of 1 and a covariance matrix
of the same identity matrix. Cluster 4 has a mean of 1.5 and a covariance

matrix of 1.5214.

DGP 6: Five distinct clusters were created using independently generated

random variables with different distributions. Specifically, the first cluster
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was derived from non-central t-distributions with 25 degrees of freedom and
a non-centrality parameter of 1.5. The second cluster was produced from
gamma distributions, represented by the symbol Gam(3, 1.2), where 3 and
1.2 indicate the shape and rate parameters, respectively. The third cluster
was formed using a uniform distribution over the continuous interval between
1 and 5. The fourth cluster was composed of independent Gaussian random
variables with a mean of —1 and a covariance matrix of 1.5215y. Finally, the
fifth cluster formed from the Gaussian distribution of mean 2 and a covariance

matrix of 22 1.

Table 4: Specifications of DGPs in the Simulation Study. N: denotes the
number of classes, p: denotes the number of variables, and n: denotes the
number of observations.

N P Distributions Clusters size n
DGP1 2 40 Gaussians (300, 250) 550
DGP2 2 45 Lognormal, Pareto (500, 500) 1000
DGP3 3 30 Gaussians (200, 400, 300) 900
DGP4 3 45 Chi-Square, Exponential, Uni- (500, 500, 500) 1500
form
DGP5 4 27 Multi-variate Gaussian distri- (350, 200, 300, 250) 1100
butions
DGP6 5 30 Non-central t-distributions, (250, 200, 250, 200, 200) 1100
uniform, Gamma and
Gaussians

Analysis of classification accuracy on simulated

data for different values of K

In our main paper, we examine the classification effectiveness of the DC-KNN
techniques by varying the value of K, particularly focusing on the classifica-
tion accuracy with simulated datasets. As detailed in Subsection 4.2 of the
main paper, K ranges from 1 to 20, increasing incrementally by 1. We discuss

the classification accuracy for various K values and illustrate these findings
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in Figure 4. Our analysis shows that DC-KNN2’s classification accuracy is
notably impacted by the different K values, achieving better results with
smaller K values, which remain constant for larger K. This behavior aligns
with the phenomenon where K exceeds the sum of apriori class subgroups.
Moreover, we found that DC-KNN1 consistently outperforms traditional KNN
and Kmeans-KNN across all K values, underscoring the beneficial impact
of DC’s new objective function on classifier performance. The determination

of optimal subgroup numbers in our proposed method is data-dependent, as

further elaborated in our study.
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Fig. 4: The classification accuracy for each method on the simulated datasets
with varying K values
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