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Supplementary material

Proof of the problem P1

If we set Eq. 11 to zero, we have

nk∑
i=1

ugip[(xij − zgpj)(zgpj − zgGj)2 + (zgpj − zgGj)(xij − zgpj)2] = 0 (27)

Which gives:

ng∑
i=1

ugip(xij − zgpj)(zgpj − zgGj)(��zgpj − zgGj + xij −��zgpj) = 0 (28)

If zgpj 6= zgGj , we have:

zkpj =

∑ng
i=1 ugipxij(xij − zgGj)∑ng
i=1 ugip(xij − zgGj)

(29)
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Constantly necessary and sufficient condition for this equality to be realizable

is when:

xmin ≤ zgpj ≤ xmax (30)

where:

xmin = min
i=1,...,n

ugipxij and xmax = max
i=1,...,n

ugipxij for the subgoup p from the

apriori group K

Suppose that

ng∑
i=1

ugip(xij − zgGj) > 0 the inequality becomes:

xmin

ng∑
i=1

ugip(xij−zgGj) ≤
(1)

ng∑
i=1

ugipxij(xij−zgGj) ≤
(2)
xmax

ng∑
i=1

ugip(xij−zgGj)

(31)

For the inequality (1):

ng∑
i=1

ukipxij(xij − zgGj) ≥ xmin
ng∑
i=1

ugip(xij − zgGj) (32)

We get:

zkGj ≤
∑ng

i=1 ugipx
2
ij − xmin

∑ng
i=1 ugipxij∑ng

i=1 ugipxij − xminng
(33)

zgGj ≤
∑ng

i=1 ugipx
2
ij − xmin

∑ng
i=1 ugipxij

ng(X̄gp − xmin)
(34)

For the inequality (2):

ng∑
i=1

ugipxij(xij − zgGj) ≤ xmax
ng∑
i=1

ugip(xij − zgGj) (35)

We get:

zgGj ≤
xmaxngX̄gp −

∑ng
i=1 ugipx

2
ij

ng(xmax − X̄gp)
(36)

So:
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zgGj ≤ min{
∑ng

i=1 ugipx
2
ij − xmin

∑ng
i=1 ugipxij

ng(X̄gp − xmin)
,
xmaxngX̄gp −

∑ng
i=1 ugipx

2
ij

ng(xmax − X̄gp)
}

(37)

Suppose that

ng∑
i=1

ugip(xij − zgGj) < 0 the inequality becomes:

xmax

ng∑
i=1

ugip(xij−zgGj) ≤
(1)

ng∑
i=1

ugipxij(xij−zgGj) ≤
(2)
xmin

ng∑
i=1

ugip(xij−zgGj)

(38)

For the inequality (1):

ng∑
i=1

ugipxij(xij − zgGj) ≥ xmax
ng∑
i=1

ugip(xij − zgGj) (39)

We get:

zgGj ≥
xmaxngX̄gp −

∑ng
i=1 ugipx

2
ij

ng(xmax − X̄gp)
(40)

For the inequality (2):

ng∑
i=1

ugipxij(xij − zgGj) ≤ xmin
ng∑
i=1

ugip(xij − zgGj) (41)

We get:

zgGj ≥
∑ng

i=1 ukipx
2
ij − xmin

∑ng
i=1 ugipxij∑ng

i=1 ugipxij − xminng
(42)

zgGj ≥
∑ng

i=1 ugipx
2
ij − xmin

∑ng
i=1 ugipxij

ng(X̄gp − xmin)
(43)
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So:

zgGj ≥ max

{
xmaxngX̄gp −

∑ng
i=1 ugipx

2
ij

ng(xmax − X̄gp)
,

∑ng
i=1 ugipx

2
ij − xmin

∑ng
i=1 ugipxij

ng(X̄gp − xmin)

}
(44)

To assure that zgGj is a solution for Eq. 11 it suffices to verify that zgGj meets

the following conditions:



zgGj ≤ min

{∑ng
i=1 ugipx

2
ij−xmin

∑ng
i=1 ugipxij

ng(X̄gp−xmin)
,
xmaxngX̄gp−

∑ng
i=1 ugipx

2
ij

ng(xmax−X̄gp)

}
if

ng∑
i=1

ugip(xij − zgGj) > 0

zgGj ≥ max
{
xmaxngX̄gp−

∑ng
i=1 ugipx

2
ij

ng(xmax−X̄gp)
,
∑ng
i=1 ugipx

2
ij−xmin

∑ng
i=1 ugipxij

ng(X̄gp−xmin)

}
if

ng∑
i=1

ugip(xij − zgGj) < 0

(45)

Description of the Data Generation Processes

This section aims to offer precise and clear definitions for each DGP, ensur-

ing understanding and clarity. It is essential to ensure a comprehensive

understanding of each DGP in order to facilitate accurate interpretation and

analysis of the generated data:

DGP 1: Two clusters were created by utilizing independent Gaussian

random variables. Cluster 1 has a mean value of 0 and a covariance matrix of

0.82I40, where I40 represents the identity matrix of size 40. Cluster 2 shows a

mean of 0.1 and a covariance matrix of 0.92I40.

DGP 2: Two distinct clusters were created using independent ran-

dom variables that had different distributions. Cluster 1 is formed from a
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Lognormal distribution that produces samples from a conventional normal

distribution with a mean of 0 and a covariance matrix of I45. Cluster 2 is

formed by applying the Pareto distribution with a shape parameter of 2.62.

DGP 3: Three clusters were created by utilizing independent Gaussian

random variables. Cluster 1 has a mean value of 0 and a covariance matrix of

0.72I40. Cluster 2 has a mean of 0.1 and a covariance matrix of 0.62I40, while

cluster 3 has a mean of 0.7 and a covariance matrix of 0.52I40.

DGP 4: Three distinct clusters were generated by using independent

random variables that had different distributions. Cluster 1 is generated

when samples from a Chi-Square distribution with a degree of freedom of

2 are drawn from a Lognormal distribution. Cluster 2 is produced when an

exponential distribution is utilized to represent the intervals between events

in a Poisson process with a scale of 1. Conversely, cluster 3 is generated using

a uniform distribution, which yields values that are uniformly distributed

within the range of 0 to 1.5.

DGP 5: Four clusters were created by utilizing independent Gaussian

random variables. Cluster 1 has a mean value of 0 and a covariance matrix

of I40. Cluster 2 has a mean of 0.5 and a covariance matrix of the identity

matrix with dimensions 40. Cluster 3 has a mean of 1 and a covariance matrix

of the same identity matrix. Cluster 4 has a mean of 1.5 and a covariance

matrix of 1.52I40.

DGP 6: Five distinct clusters were created using independently generated

random variables with different distributions. Specifically, the first cluster
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was derived from non-central t-distributions with 25 degrees of freedom and

a non-centrality parameter of 1.5. The second cluster was produced from

gamma distributions, represented by the symbol Gam(3, 1.2), where 3 and

1.2 indicate the shape and rate parameters, respectively. The third cluster

was formed using a uniform distribution over the continuous interval between

1 and 5. The fourth cluster was composed of independent Gaussian random

variables with a mean of −1 and a covariance matrix of 1.52I30. Finally, the

fifth cluster formed from the Gaussian distribution of mean 2 and a covariance

matrix of 22I30.

Table 4: Specifications of DGPs in the Simulation Study. N: denotes the
number of classes, p: denotes the number of variables, and n: denotes the
number of observations.

N p Distributions Clusters size n
DGP1 2 40 Gaussians (300, 250) 550
DGP2 2 45 Lognormal, Pareto (500, 500) 1000
DGP3 3 30 Gaussians (200, 400, 300) 900
DGP4 3 45 Chi-Square, Exponential, Uni-

form
(500, 500, 500) 1500

DGP5 4 27 Multi-variate Gaussian distri-
butions

(350, 200, 300, 250) 1100

DGP6 5 30 Non-central t-distributions,
uniform, Gamma and
Gaussians

(250, 200, 250, 200, 200) 1100

Analysis of classification accuracy on simulated

data for different values of K

In our main paper, we examine the classification effectiveness of the DC-KNN

techniques by varying the value of K, particularly focusing on the classifica-

tion accuracy with simulated datasets. As detailed in Subsection 4.2 of the

main paper, K ranges from 1 to 20, increasing incrementally by 1. We discuss

the classification accuracy for various K values and illustrate these findings
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in Figure 4. Our analysis shows that DC-KNN2’s classification accuracy is

notably impacted by the different K values, achieving better results with

smaller K values, which remain constant for larger K. This behavior aligns

with the phenomenon where K exceeds the sum of apriori class subgroups.

Moreover, we found that DC-KNN1 consistently outperforms traditional KNN

and Kmeans-KNN across all K values, underscoring the beneficial impact

of DC’s new objective function on classifier performance. The determination

of optimal subgroup numbers in our proposed method is data-dependent, as

further elaborated in our study.
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(e) DGP 5
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(f) DGP 6

Fig. 4: The classification accuracy for each method on the simulated datasets
with varying K values
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