Support Information for

Modelling Elongational Viscosity and Brittle Fracture of Polystyrene Solutions

Manfred H. Wagner¹, Esmaeil Narimissa^{2,3}, Leslie Poh^{2,3}, and Taisir Shahid^{4,5}

¹ Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Fasanenstrasse 90, 10623 Berlin, Germany

² Dept. of Chemical Engineering, Technion–Israel Institute of Technology (IIT), Technion City, Haifa 32 000, Israel

³ Dept. of Chemical Engineering, Guangdong Technion–Israel Institute of Technology (GTIIT), Shantou 515063, China

⁴ Bio and Soft Matter, Institute on Condensed Matter and Nano-science, Université catholique de Louvain, Louvain-la-Neuve, Belgium

⁵ DSM Materials Science Center, P.O. Box 18, NL-6160 MD Geleen, The Netherlands

LVE Characterization

PS-820k/8.8kk-30		
Pa] τ_i [s]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
003 3.593e+004		
+(+(+() +() +() +() +()		

Table S1. Discrete relaxation spectra from mastercurves of *G*' and *G*'' at $T=T_g+23.4K$ obtained by IRIS (Winter and Mours 2006).

PS-820k/8.8k-20		PS-820k/8.8k-10		PS-820k/8.8k-05		PS-820k/8.8kk-03	
^g _i [Pa]	τ_i [s]	^g _i [Pa]	τ_i [s]	^g _i [Pa]	τ_i [s]	^g _i [Pa]	τ_i [s]
4.440e+006 3.130e+005 5.533e+004 2.802e+004 9.673e+003 4.118e+003 2.634e+003 2.217e+003 2.098e+003 1.964e+003	8.139e-003 9.729e-002 2.260e-001 8.880e-001 5.528e+000 2.604e+001 1.519e+002 7.589e+002 3.461e+003 1.421e+004	6.634e+006 2.175e+005 7.096e+003 3.847e+003 1.701e+003 7.349e+002 6.471e+002 6.762e+002 1.247e+001	3.383e-003 2.337e-001 1.878e+000 7.620e+000 3.851e+001 1.725e+002 7.050e+002 3.671e+003 4.866e+004	4.376e+007 4.144e+005 1.204e+005 6.254e+003 3.641e+003 1.800e+003 6.689e+002 3.296e+002 1.985e+002 3.894e+000	6.239e-004 6.157e-002 1.391e-001 6.226e-001 2.273e+000 1.214e+001 6.651e+001 3.712e+002 1.783e+003 3.125e+004	1.306e+007 2.306e+005 6.300e+003 1.808e+003 6.160e+002 2.123e+002 1.304e+002 1.010e+001	1.826e-003 1.776e-001 2.013e-001 5.655e+000 3.513e+001 1.868e+002 8.035e+002 3.614e+003
8.457e+000	2.240e+005				2.12001001		

a) PS-820k/8.8k-50

b) PS-820k/8.8k-40

c) PS-820k/8.8k-30

d) PS-820k/8.8k-20

e) PS-820k/8.8k-10

g) PS-820k/8.8k-03

Fig. S1 (a)-(g): Mastercurves of *G*' and *G*'' (symbols) at iso-Tg temperatures T_0 , i.e. temperatures with equal distance to the glass transition temperature T_g with $T_0=T_g+23.4$ K, and fit by parsimonious relaxation spectra (red lines through data points) with parameters given in Table S1.

Reference

Winter HH, Mours M (2006). The cyber infrastructure initiative for rheology. Rheologica Acta 45: 331-338.