Supplementary Material for
 Some Dimension Reduction Strategies for the Analysis of Survey Data

Jiaying Weng and Derek S. Young
Department of Statistics, University of Kentucky

October 29, 2017

1 Additional Tables and Figures

- Table 1 gives the variable numbers and definitions of variables used from the 2015 Planning Database.
- Tables $2-16$ give the marginal tests for dimension using SIR, partial SIR, SAVE, $y \mathrm{PHD}$, and $r \mathrm{PHD}$, each for the responses Y_{1}, Y_{2}, and Y_{3}.
- Table 17 gives the coefficients for the six largest principal components. Tables $18-20$ give the coefficients of the directions using SIR for each of the responses Y_{1}, Y_{2}, and Y_{3}.
- Figures 1 and 2 give the partial residual plots for the estimated additive models when Y_{2} is the response. Figures 3 and 4 give the partial residual plots for the estimated additive models when Y_{3} is the response.

No.	Definitions	Notation
73	Number of people ages 25 years and over at the time of interview with a college degree or higher in the ACS population	X_{1}
77	Number of people classified as below the poverty level given their total family income within the last year, family size, and family composition in the ACS population	X_{2}
103	Number of ACS households in which the householder and his or her spouse are listed as members of the same household; does not include same-sex married couples	X_{3}
112	Number of ACS households where a householder lives alone or with nonrelatives only; includes same-sex couples where no relatives of the householder are present	X_{4}
115	Number of ACS households where a householder lives alone	X_{5}
124	Number of ACS families with related children under 6 years old	X_{6}
130	Median ACS household income for the block group	X_{7}
132	Median ACS household income for the tract	X_{8}
145	Number of 2010 Census occupied housing units that are not owner occupied, whether they are rented or occupied without payment of rent	X_{9}
149	Number of ACS housing units where owner or co-owner lives in it	X_{10}
151	Number of ACS housing units in which the structure contains only that single unit	X_{11}
153	Number of ACS housing units in which the structure contains 2 or more housing units	X_{12}
155	Number of ACS housing units in which the structure contains 10 or more housing units	X_{13}
167	Median of ACS respondents' house value estimates for the block group	X_{14}
169	Median of ACS respondents' house value estimates for the tract	X_{15}
	Name of State or statistically equivalent territory; island territories are excluded from this analysis; these values are converted to a categorical variable based on 9 Census-designated geographical regions; only used for partial SIR analysis	W
83	Number of people with no health insurance coverage in the ACS	Y_{1}
79	Number of people with one type of health insurance coverage in the ACS	Y_{2}
81	Number of people with two or more types of health insurance coverage in the ACS	Y_{3}
	N	

Table 1: The first two columns are the variable numbers and definitions as given in the 2015 Planning Database documentation. The last column is the variable notation used in our manuscript.

	Stat	df	p.value
0D vs $>=$ 1D	127778.6966	1350.0000	0.0000
1D vs $>=$ 2D	16024.8353	1246.0000	0.0000
2D vs $>=$ 3D	3047.0326	1144.0000	0.0000
3D vs $>=$ 4D	1734.3518	1044.0000	0.0000
4D vs $>=$ 5D	1066.5385	946.0000	0.0037
5D vs $>=6 \mathrm{D}$	887.9807	850.0000	0.1778

Table 2: Marginal tests for dimension using SIR for Y_{1}.

	Stat	df	p.value
0D vs $>=$ 1D	190395.5193	1440.0000	0.0000
1D vs $>=$ 2D	14939.5602	1330.0000	0.0000
2D vs $>=$ 3D	3219.2447	1222.0000	0.0000
3D vs $>=$ 4D	2105.2266	1116.0000	0.0000
4D vs $>=$ 5D	1446.9417	1012.0000	0.0000
5D vs $>=$ 6D	985.2887	910.0000	0.0415
6D vs $>=$ 7D	819.7028	810.0000	0.3987

Table 3: Marginal tests for dimension using SIR for Y_{2}.

	Stat	df	p.value
0D vs $>=$ 1D	122357.2786	1350.0000	0.0000
1D vs $>=$ 2D	4365.2667	1246.0000	0.0000
2D vs $>=$ 3D	1652.9354	1144.0000	0.0000
3D vs $>=$ 4D	1090.7890	1044.0000	0.1530

Table 4: Marginal tests for dimension using SIR for Y_{3}.

	Stat	df	p.value
0D vs $>=$ 1D	135883.3292	1890.0000	0.0000
1D vs $>=$ 2D	30601.3194	1750.0000	0.0000
2D vs $>=$ 3D	17235.6722	1612.0000	0.0000
3D vs $>=4 \mathrm{D}$	11202.4369	1476.0000	0.0000
4D vs $>=$ 5D	5729.4764	1342.0000	0.0000
5D vs $>=6 \mathrm{D}$	4036.6166	1210.0000	0.0000
6D vs $>=$ 7D	3074.6650	1080.0000	0.0000
7D vs $>=$ 8D	2225.1084	952.0000	0.0000
8D vs $>=9 \mathrm{D}$	1611.4217	826.0000	0.0000
9D vs $>=10 \mathrm{D}$	1143.4266	702.0000	0.0000
10D vs $>=11 \mathrm{D}$	838.7606	580.0000	0.0000
11D vs $>=12 \mathrm{D}$	564.9019	460.0000	0.0006
12D vs $>=13 \mathrm{D}$	378.5320	342.0000	0.0845

Table 5: Marginal tests for dimension using partial SIR for Y_{1}.

	Stat	df	p.value
0D vs $>=$ 1D	186797.3133	1890.0000	0.0000
1D vs $>=$ 2D	19837.5882	1750.0000	0.0000
2D vs $>=$ 3D	11290.3427	1612.0000	0.0000
3D vs $>=$ 4D	6349.3462	1476.0000	0.0000
4D vs $>=$ 5D	4578.4808	1342.0000	0.0000
5D vs $>=$ 6D	3574.0556	1210.0000	0.0000
6D vs $>=7 \mathrm{D}$	2712.0028	1080.0000	0.0000
7D vs $>=$ 8D	2101.2728	952.0000	0.0000
8D vs $>=$ 9D	1544.1730	826.0000	0.0000
9D vs $>=10 \mathrm{D}$	1090.4002	702.0000	0.0000
10D vs $>=$ 11D	713.0341	580.0000	0.0001
11D vs $>=$ 12D	520.1782	460.0000	0.0271
12D vs $>=$ 13D	354.5500	342.0000	0.3087

Table 6: Marginal tests for dimension using partial SIR for Y_{2}.

	Stat	df	p.value
0D vs $>=$ 1D	125037.5661	1890.0000	0.0000
1D vs $>=$ 2D	12174.7443	1750.0000	0.0000
2D vs $>=$ 3D	7708.3127	1612.0000	0.0000
3D vs $>=$ 4D	5508.1238	1476.0000	0.0000
4D vs $>=$ 5D	3601.2730	1342.0000	0.0000
5D vs $>=6 \mathrm{D}$	2592.4299	1210.0000	0.0000
6D vs $>=$ 7D	2036.2467	1080.0000	0.0000
7D vs $>=$ 8D	1586.4564	952.0000	0.0000
8D vs $>=$ 9D	1169.7110	826.0000	0.0000
9D vs $>=$ 10D	883.9065	702.0000	0.0000
10D vs $>=$ 11D	662.7294	580.0000	0.0096
11D vs $>=$ 12D	503.9640	460.0000	0.0767

Table 7: Marginal tests for dimension using partial SIR for Y_{3}.

	Stat	df(Nor)	p.value(Nor)	p.value(Gen)
0D vs $>=$ 1D	155893.0352	10800.0000	0.0000	0.0000
1D vs $>=$ 2D	100362.0724	9450.0000	0.0000	0.0000
2D vs $>=$ 3D	67439.6073	8190.0000	0.0000	0.0000
3D vs $>=$ 4D	51215.0052	7020.0000	0.0000	0.0000
4D vs $>=$ 5D	35688.0690	5940.0000	0.0000	0.0000
5D vs $>=6 \mathrm{D}$	26905.6040	4950.0000	0.0000	0.0000
6D vs $>=$ 7D	19995.1203	4050.0000	0.0000	0.0000
7D vs $>=$ 8D	14602.3232	3240.0000	0.0000	0.0000
8D vs $>=$ 9D	9537.5269	2520.0000	0.0000	0.0000
9D vs $>=$ 10D	6363.6019	1890.0000	0.0000	0.0000
10D vs $>=$ 11D	4106.7176	1350.0000	0.0000	0.0000
11D vs $>=12 \mathrm{D}$	2501.2630	900.0000	0.0000	0.0000
12D vs $>=$ 13D	963.0952	540.0000	0.0000	0.0000
13D vs $>=$ 14D	481.3117	270.0000	0.0000	0.0000
14D vs $>=$ 15D	165.6979	90.0000	0.0000	0.0001

Table 8: Marginal tests for dimension using SAVE for Y_{1}.

	Stat	df(Nor)	p.value(Nor)	p.value(Gen)
0D vs $>=$ 1D	202380.8499	11520.0000	0.0000	0.0000
1D vs $>=$ 2D	120104.8546	10080.0000	0.0000	0.0000
2D vs $>=$ 3D	86294.5554	8736.0000	0.0000	0.0000
3D vs $>=4 \mathrm{D}$	67227.5472	7488.0000	0.0000	0.0000
4D vs $>=5 \mathrm{D}$	50647.6075	6336.0000	0.0000	0.0000
5D vs $>=$ 6D	38796.3954	5280.0000	0.0000	0.0000
6D vs $>=$ 7D	29546.9660	4320.0000	0.0000	0.0000
7D vs $>=$ 8D	20973.2996	3456.0000	0.0000	0.0000
8D vs $>=9 D$	13229.5670	2688.0000	0.0000	0.0000
9D vs $>=10 \mathrm{D}$	8881.6138	2016.0000	0.0000	0.0000
10D vs $>=11 \mathrm{D}$	5079.2924	1440.0000	0.0000	0.0000
11D vs $>=12 \mathrm{D}$	2796.0802	960.0000	0.0000	0.0000
12D vs $>=13 \mathrm{D}$	1608.2308	576.0000	0.0000	0.0000
13D vs $>=14 \mathrm{D}$	920.0632	288.0000	0.0000	0.0000
14D vs $>=15 \mathrm{D}$	130.5440	96.0000	0.0110	0.2348

Table 9: Marginal tests for dimension using SAVE for Y_{2}.

	Stat	df(Nor)	p.value(Nor)	p.value(Gen)
0D vs $>=$ 1D	165243.9364	10800.0000	0.0000	0.0000
1D vs $>=$ 2D	93909.3811	9450.0000	0.0000	0.0000
2D vs $>=$ 3D	72197.5033	8190.0000	0.0000	0.0000
3D vs $>=$ 4D	53503.1774	7020.0000	0.0000	0.0000
4D vs $>=$ 5D	36097.7707	5940.0000	0.0000	0.0000
5D vs $>=$ 6D	30187.7898	4950.0000	0.0000	0.0000
6D vs $>=$ 7D	21426.5150	4050.0000	0.0000	0.0000
7D vs $>=$ 8D	14761.7767	3240.0000	0.0000	0.0000
8D vs $>=$ 9D	11924.8792	2520.0000	0.0000	0.0000
9D vs $>=$ 10D	8029.3853	1890.0000	0.0000	0.0000
10D vs $>=$ 11D	4863.7098	1350.0000	0.0000	0.0000
11D vs $>=$ 12D	2440.2639	900.0000	0.0000	0.0000
12D vs $>=$ 13D	1374.6700	540.0000	0.0000	0.0000
13D vs $>=$ 14D	660.7789	270.0000	0.0000	0.0000
14D vs $>=$ 15D	263.5019	90.0000	0.0000	0.0000

Table 10: Marginal tests for dimension using SAVE for Y_{3}.

	Stat	df	p.value
0D vs $>=$ 1D	177617.1046	120.0000	0.0000
1D vs $>=$ 2D	88173.7126	105.0000	0.0000
2D vs $>=$ 3D	45843.1292	91.0000	0.0000
3D vs $>=$ 4D	29122.7571	78.0000	0.0000
4D vs $>=$ 5D	19138.0857	66.0000	0.0000
5D vs $>=6 \mathrm{D}$	13805.7601	55.0000	0.0000
6D vs $>=$ 7D	9985.1348	45.0000	0.0000
7D vs $>=$ 8D	6520.6016	36.0000	0.0000
8D vs $>=9 \mathrm{D}$	3889.2340	28.0000	0.0000
9D vs $>=10 \mathrm{D}$	1590.2069	21.0000	0.0000
10D vs $>=11 \mathrm{D}$	942.9892	15.0000	0.0000
11D vs $>=12 \mathrm{D}$	486.7179	10.0000	0.0000
12D vs $>=13 \mathrm{D}$	71.1956	6.0000	0.0000
13D vs $>=$ 14D	12.2295	3.0000	0.0066
14D vs $>=$ 15D	1.0953	1.0000	0.2953

Table 11: Marginal tests for dimension using y PHD for Y_{1}.

	Stat	df	p.value
0D vs $>=$ 1D	439738.0094	120.0000	0.0000
1D vs $>=$ 2D	76715.4122	105.0000	0.0000
2D vs $>=$ 3D	51136.6858	91.0000	0.0000
3D vs $>=$ 4D	38958.6704	78.0000	0.0000
4D vs $>=$ 5D	29988.2428	66.0000	0.0000
5D vs $>=6 \mathrm{D}$	22442.1725	55.0000	0.0000
6D vs $>=7 \mathrm{D}$	16056.8839	45.0000	0.0000
7D vs $>=$ 8D	10865.5818	36.0000	0.0000
4D vs $>=9 \mathrm{D}$	7673.7579	28.0000	0.0000
9D vs $>=10 \mathrm{D}$	5090.7992	21.0000	0.0000
10D vs $>=11 \mathrm{D}$	3086.2911	15.0000	0.0000
11D vs $>=12 \mathrm{D}$	1695.3168	10.0000	0.0000
12D vs $>=$ 13D	799.5905	6.0000	0.0000
13D vs $>=14 \mathrm{D}$	157.2727	3.0000	0.0000
14D vs $>=$ 15D	49.1525	1.0000	0.0000

Table 12: Marginal tests for dimension using y PHD for Y_{2}.

	Stat	df	p.value
0D vs $>=$ 1D	353756.5493	120.0000	0.0000
1D vs $>=$ 2D	66815.8666	105.0000	0.0000
2D vs $>=$ 3D	42564.1906	91.0000	0.0000
3D vs $>=$ 4D	29255.1540	78.0000	0.0000
4D vs $>=$ 5D	21253.0088	66.0000	0.0000
5D vs $>=6 \mathrm{D}$	15753.9311	55.0000	0.0000
6D vs $>=7 \mathrm{D}$	11745.6460	45.0000	0.0000
7D vs $>=8 \mathrm{D}$	7916.3094	36.0000	0.0000
8D vs $>=9 \mathrm{D}$	5256.1625	28.0000	0.0000
9D vs $>=10 \mathrm{D}$	3157.9192	21.0000	0.0000
10D vs $>=11 \mathrm{D}$	1365.1721	15.0000	0.0000
11D vs $>=12 \mathrm{D}$	377.5952	10.0000	0.0000
12D vs $>=13 \mathrm{D}$	161.2063	6.0000	0.0000
13D vs $>=14 \mathrm{D}$	23.7377	3.0000	0.0000
14D vs $>=15 \mathrm{D}$	2.0988	1.0000	0.1474

Table 13: Marginal tests for dimension using y PHD for Y_{3}.

	Stat	df	Normal theory	General theory
0D vs $>=$ 1D	63493.5068	120.0000	0.0000	0.0000
1D vs $>=$ 2D	21521.6466	105.0000	0.0000	0.0000
2D vs $>=$ 3D	14422.7581	91.0000	0.0000	0.0000
3D vs $>=4 \mathrm{D}$	10123.7357	78.0000	0.0000	0.0000
4D vs $>=$ 5D	7327.0031	66.0000	0.0000	0.0000
5D vs $>=6 \mathrm{D}$	5386.9316	55.0000	0.0000	0.0000
6D vs $>=7 \mathrm{D}$	3747.6975	45.0000	0.0000	0.0000
7D vs $>=$ 8D	2532.2495	36.0000	0.0000	0.0000
8D vs $>=9 \mathrm{D}$	1508.2198	28.0000	0.0000	0.0000
9D vs $>=10 \mathrm{D}$	894.7523	21.0000	0.0000	0.0000
10D vs $>=11 \mathrm{D}$	466.2296	15.0000	0.0000	0.0046
11D vs $>=12 \mathrm{D}$	245.7336	10.0000	0.0000	0.0261
12D vs $>=13 \mathrm{D}$	113.4531	6.0000	0.0000	0.1162

Table 14: Marginal tests for dimension using $r \mathrm{PHD}$ for Y_{1}.

	Stat	df	Normal theory	General theory
0D vs $>=$ 1D	297042.0875	120.0000	0.0000	0.0000
1D vs $>=$ 2D	57454.3761	105.0000	0.0000	0.0000
2D vs $>=$ 3D	32396.9258	91.0000	0.0000	0.0000
3D vs $>=$ 4D	21121.3081	78.0000	0.0000	0.0000
4D vs $>=$ 5D	15731.3264	66.0000	0.0000	0.0000
5D vs $>=6 \mathrm{D}$	11043.5915	55.0000	0.0000	0.0000
6D vs $>=$ 7D	8151.5707	45.0000	0.0000	0.0000
7D vs $>=$ 8D	6093.5342	36.0000	0.0000	0.0000
8D vs $>=9 \mathrm{D}$	4369.9673	28.0000	0.0000	0.0000
9D vs $>=10 \mathrm{D}$	3045.2298	21.0000	0.0000	0.0000
10D vs $>=11 \mathrm{D}$	1774.6722	15.0000	0.0000	0.0000
11D vs $>=12 \mathrm{D}$	981.6630	10.0000	0.0000	0.0000
12D vs $>=13 \mathrm{D}$	448.7045	6.0000	0.0000	0.0000
13D vs $>=14 \mathrm{D}$	202.5587	3.0000	0.0000	0.0000
14D vs $>=$ 15D	32.6826	1.0000	0.0000	0.0000

Table 15: Marginal tests for dimension using r PHD for Y_{2}.

	Stat	df	Normal theory	General theory
0D vs $>=$ 1D	186134.5644	120.0000	0.0000	0.0791
1D vs $>=$ 2D	21586.0017	105.0000	0.0000	0.0000
2D vs $>=$ 3D	12164.9782	91.0000	0.0000	0.0000
3D vs $>=$ 4D	7662.8802	78.0000	0.0000	0.0000
4D vs $>=$ 5D	5390.0871	66.0000	0.0000	0.0000
5D vs $>=6 \mathrm{D}$	3877.5847	55.0000	0.0000	0.0000
6D vs $>=$ 7D	2616.0759	45.0000	0.0000	0.0000
7D vs $>=$ 8D	1464.6075	36.0000	0.0000	0.0000
8D vs $>=9 \mathrm{D}$	723.0290	28.0000	0.0000	0.0000
9D vs $>=$ 10D	283.0354	21.0000	0.0000	0.0000
10D vs $>=11 \mathrm{D}$	124.2678	15.0000	0.0000	0.0000
11D vs $>=12 \mathrm{D}$	64.9884	10.0000	0.0000	0.0001
12D vs $>=$ 13D	31.5987	6.0000	0.0000	0.0153
13D vs $>=14 \mathrm{D}$	12.3845	3.0000	0.0062	0.0721
14D vs $>=$ 15D	1.7082	1.0000	0.1912	0.3870

Table 16: Marginal tests for dimension using r PHD for Y_{3}.

	PC1	PC2	PC3	PC4	PC5	PC6
X_{1}	0.3525	-0.2220	-0.0804	0.0792	-0.0381	0.0175
X_{2}	-0.2199	-0.2521	0.1719	-0.4050	0.5662	0.0452
X_{3}	0.3206	-0.1968	0.2861	-0.1045	-0.0947	0.0107
X_{4}	-0.0243	-0.4363	-0.0496	0.3840	0.1575	0.0010
X_{5}	-0.0285	-0.4231	-0.0289	0.4330	0.1240	0.0186
X_{6}	0.0926	-0.2500	0.2436	-0.5910	-0.2395	0.1838
X_{7}	0.3995	0.0907	-0.1207	-0.0124	-0.2023	0.0353
X_{8}	0.3909	0.0485	-0.1644	-0.0141	-0.0959	0.0623
X_{9}	-0.1554	-0.4076	-0.1521	-0.1533	0.0054	0.0266
X_{10}	0.3047	-0.1725	0.3625	0.1379	-0.0128	-0.0539
X_{11}	0.2492	-0.1457	0.4150	0.0522	0.0625	-0.2072
X_{12}	-0.1501	-0.2912	-0.2521	-0.1776	-0.3920	-0.7522
X_{13}	-0.0893	-0.3204	-0.2985	-0.0264	-0.3511	0.5796
X_{14}	0.3141	-0.0186	-0.3770	-0.1696	0.3445	-0.0818
X_{15}	0.3065	-0.0320	-0.3955	-0.1672	0.3487	-0.0581

Table 17: Coefficients for the six largest principal components.

| | | Dir1 | Dir2 | Dir3 | Dir4 |
| ---: | ---: | ---: | ---: | ---: | ---: | Dir5

Table 18: Coefficients of directions using SIR for Y_{1}.

	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6
X_{1}	-0.2204	-0.2731	-0.1013	0.1569	-0.1063	-0.1416
X_{2}	-0.2516	0.3307	0.0180	0.0317	0.0848	0.0342
X_{3}	-0.2335	-0.0153	-0.0152	0.0681	0.0184	0.0329
X_{4}	-0.2898	0.0513	0.3301	-0.0985	-0.0723	-0.1500
X_{5}	0.3778	0.2154	-0.0646	0.0549	0.1543	0.3391
X_{6}	-0.4415	0.0471	0.2814	-0.1028	-0.1108	-0.0406
X_{7}	-0.2766	0.7754	0.3332	0.0188	0.0740	0.2524
X_{8}	-0.0906	0.0263	-0.0904	0.6366	0.0288	0.1055
X_{9}	-0.5272	-0.1434	-0.3863	0.1032	0.6010	-0.0869
X_{10}	-0.1943	0.0430	-0.1205	-0.0472	0.0404	-0.0954
X_{11}	-0.0125	-0.1097	0.0251	-0.0308	-0.0296	0.0491
X_{12}	-0.0187	0.0879	0.0058	-0.0402	-0.1337	-0.0722
X_{13}	0.0589	-0.2055	-0.3231	-0.1296	-0.5565	0.1784
X_{14}	-0.0242	0.2015	0.0220	-0.0459	0.0207	-0.3383
X_{15}	-0.0842	-0.1943	-0.6390	-0.7117	-0.4918	0.7702

Table 19: Coefficients of directions using SIR for Y_{2}.

	Dir1	Dir2	Dir3
X_{1}	0.0807	0.0931	0.0374
X_{2}	-0.0615	-0.0727	0.0913
X_{3}	-0.3158	-0.0160	-0.1243
X_{4}	0.2033	0.1231	-0.2009
X_{5}	-0.4741	-0.2855	0.1517
X_{6}	0.2626	-0.0074	0.1238
X_{7}	0.3778	-0.0886	0.1529
X_{8}	0.4416	-0.5953	0.5560
X_{9}	-0.1200	0.2260	0.2358
X_{10}	-0.3198	0.0175	0.1309
X_{11}	-0.0346	0.0168	-0.0675
X_{12}	-0.0263	0.0510	-0.0105
X_{13}	-0.1888	0.0653	0.0046
X_{14}	-0.1453	-0.1032	0.1437
X_{15}	-0.2048	0.6766	-0.6823

Table 20: Coefficients of directions using SIR for Y_{3}.

Figure 1: Partial residual plots for each of the PCA predictors when Y_{2} is the response.

Figure 2: Partial residual plots for each of the significant SIR predictors when Y_{2} is the response.

Figure 3: Partial residual plots for each of the PCA predictors when Y_{3} is the response.

Figure 4: Partial residual plots for each of the significant SIR predictors when Y_{3} is the response.

