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Proof of Convergence
Proof The following proof of DASO’s global synchronization method is based heavily on the

convergence analysis shown by [43] and will show that the gradients determined with DASO are

bounded.

Let X ⊂ Rn be a known set, and f : X → R a differentiable, convex, L-smooth, and unknown function.

Then, the estimator of the stochastic gradient of f(x) is a function g̃(x) for inputs x determined by the

realization of a random variable ζ, such that E[g̃(x; ζ)] = ∇f(x : ζ). In the following, ζ is omitted due

to space constraints. The stochastic gradient descent (SGD) algorithm updates a model’s state at

batch t+ 1, xt+1, with the following rule xt+1 = xt − ηg̃(xt), where η is the parametric learning rate.

A commonly used variant of SGD in practice is minibatching for computational efficiency reasons. In

minibatch SGD, the true stochastic gradient is approximated by averaging across m input items xi, i.e.

G̃(xt) = 1
m

∑m
i=1 g̃(xt,i). The model state xt+1 for minibatch SGD is

xt+1 = xt − ηG̃ (xt) (3)

where G̃ (xt) is an estimator of ∇f (xt).

Let us now consider, that S subsequent update steps are performed. It is possible to write the model

state as:

xt+S = xt − η
S−1∑
i=0

G̃ (xt+i) (4)

One of the primary assumptions in SGD is the Lipschitz-continuous objective gradients. This has the

effect that:

f (xt+1)− f (xt) ≤ −η∇f (xt)
T E [g̃ (xt)] +

1

2
η
2
LE
[
‖g̃ (xt)‖22

]
(5)

where the Lipschitz constant, L, is greater than zero. Equation (5) implies that the expected decrease

in the objective function, f(x), is bounded above by a set quantity, regardless of how the stochastic

gradients arrived at xt [43].

In DASO, the local synchronization step is bound via the same assumptions as minibatch SGD

outlined in [43], so long as the iid assumption is upheld. However, the non-standard global

synchronization step used in DASO must be shown to be bound under the same principles. DASO’s

global synchronization is:

x
DASO
t+S =

2Sxl:t+S−1 +
∑P
i=1 x

i
p:t

2S + P
(6)

where the l and p subscripts represent the node-local and global model states, S is the number of local

update steps before global synchronization, and P is the number of processes.

Similar to Equation (3), this can also be represented via the locally and globally calculated gradients,

G̃l (xl:t) and G̃p (xp:t) respectively. The global synchronization function in the gradient representation

is as follows:

x
DASO
t+S = xt − α

(
2S

S−1∑
k=0

G̃l (xl:t+k) +

P∑
i=1

G̃p
(
x
i
p:t

))
(7)

where α = η/(2S + P ). Using this, Equation (3), and the fact that the updates between t and S are

local synchronizations which take the form of Equation (4), we find that globally calculated gradients

are as follows.

G̃
DASO

(xt+S−1) = P

S−1∑
β=0

G̃l (xl:t+S−β)− 2SG̃l (xl:t+S−1)−
P∑
i=1

G̃p
(
x
i
p:t

)
(8)

As all gradient elements in Equation (8) are bound under Equation (5), G̃DASO (xt+S−1) is similarly

bounded.


