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Proof of Convergence

Proof The following proof of DASO’s global synchronization method is based heavily on the
convergence analysis shown by [43] and will show that the gradients determined with DASO are
bounded.

Let X C R™ be a known set, and f : X — R a differentiable, convex, L-smooth, and unknown function.
Then, the estimator of the stochastic gradient of f(z) is a function g(x) for inputs « determined by the
realization of a random variable ¢, such that E[g(z;¢)] = Vf(z : ). In the following, ¢ is omitted due
to space constraints. The stochastic gradient descent (SGD) algorithm updates a model’s state at
batch t + 1, x¢41, with the following rule z;4+1 = z; — ng(z¢), where 7 is the parametric learning rate.
A commonly used variant of SGD in practice is minibatching for computational efficiency reasons. In
minibatch SGD, the true stochastic gradient is approximated by averaging across m input items x;, i.e.
G(zt) = L 3 §(mt,q). The model state z¢11 for minibatch SGD is

Tii1 =zt — G (x4) (3)

where G (z¢) is an estimator of V f (z¢).
Let us now consider, that S subsequent update steps are performed. It is possible to write the model

state as:
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One of the primary assumptions in SGD is the Lipschitz-continuous objective gradients. This has the
effect that:

J @ea) = f (@) < 0] @) B[g @] + 50°LE [l (2o)l3] (5)

where the Lipschitz constant, L, is greater than zero. Equation (5) implies that the expected decrease
in the objective function, f(z), is bounded above by a set quantity, regardless of how the stochastic
gradients arrived at z; [43].

In DASO, the local synchronization step is bound via the same assumptions as minibatch SGD
outlined in [43], so long as the iid assumption is upheld. However, the non-standard global
synchronization step used in DASO must be shown to be bound under the same principles. DASO’s
global synchronization is:
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where the | and p subscripts represent the node-local and global model states, S is the number of local
update steps before global synchronization, and P is the number of processes.

Similar to Equation (3), this can also be represented via the locally and globally calculated gradients,
G (z1.¢) and dp (xp:t) respectively. The global synchronization function in the gradient representation
is as follows:
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where a = 1/(2S + P). Using this, Equation (3), and the fact that the updates between ¢t and S are
local synchronizations which take the form of Equation (4), we find that globally calculated gradients
are as follows.
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As all gradient elements in Equation (8) are bound under Equation (5), GPA5© (2,4 5_1) is similarly
bounded. O
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