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Abstract We identify three different levels of correla-
tion (pairwise relative ordering, network-wide ranking,
and linear regression) that could be assessed between a
computationally-light centralitymetric and a computationally-
heavy centrality metric for real-world networks. The
Kendall’s concordance-based correlation measure could be
used to quantitatively assess how well we could con-
sider the relative ordering of two vertices vi and v j with
respect to a computationally-light centrality metric as the
relative ordering of the same two vertices with respect
to a computationally-heavy centrality metric. We hypothe-
size that the pairwise relative ordering (concordance)-based
assessment of the correlation between centrality metrics is
the most strictest of all the three levels of correlation and
claim that the Kendall’s concordance-based correlation coef-
ficient will be lower than the correlation coefficient observed
with the more relaxed levels of correlation measures (lin-
ear regression-based Pearson’s product–moment correlation
coefficient and the network-wide ranking-based Spearman’s
correlation coefficient). We validate our hypothesis by eval-
uating the three correlation coefficients between two sets
of centrality metrics: the computationally-light degree and
local clustering coefficient complement-based degree cen-
trality metrics and the computationally-heavy eigenvector
centrality, betweenness centrality, and closeness centrality
metrics for a diverse collection of 50 real-world networks.
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1 Introduction

Network Science deals with analyzing complex networks
(e.g., biological networks, social networks, citation net-
works, web, etc.) from a graph theoretic perspective [1]. We
model a complex network as an abstract graph of vertices
(nodes) and edges (links). Centrality of a vertex is a quanti-
tative measure of the topological significance of the vertex in
a graph [1]. There exists a slew of centrality metrics for com-
plex network analysis. Among these, the commonly studied
metrics are the degree-based degree centrality (DegC) [1]
and eigenvector centrality (EVC) metrics [2] and the shortest
path-based betweenness centrality (BWC) [3] and closeness
centrality (CLC) metrics [4]. The degree centrality of a ver-
tex is a measure of the number of neighbors of the vertex.
The eigenvector centrality [2] of a vertex is a measure of the
degree of the vertex as well as the degree of its neighbors. A
vertex has a higher EVC if it has a high-degree and its neigh-
bors also have a high-degree. The betweenness centrality [3]
of a vertex is a measure of the number of the shortest paths
(between any two vertices in the network) that go through the
vertex. The closeness centrality [4] of a vertex is a measure
of the hop count of the shortest paths (or the weight of the
shortest paths in a weighted graph) from the vertex to the rest
of the vertices in a graph. For graphs that are not connected,
the centrality metrics are typically computed for the largest
connected component of the graph.

Among the above four centrality metrics (see Sect. 5
for a comparison of the computation time), the degree cen-
trality metric is the only computationally-light metric (i.e.,
could be computed quickly) and the other three metrics are
computationally-heavy (i.e., would take more computation
time). For a graph of V vertices and E edges, it takes �(V 3)

time to compute the EVC of the vertices [2] and �(V 2+VE)
time to compute each of the BWC [3] and CLC metrics [4].
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Recently, some research articles (e.g., [5,6]) have evaluated
the correlation between these four commonly used central-
ity metrics for real-world network graphs to see if one or
more of the computationally-heavy centrality metrics (EVC,
BWC, and CLC) exhibit a strong correlation with the degree
centrality metric (on the basis of the Pearson’s correlation
coefficient [7]), so that one could then employ linear regres-
sion to predict the strongly correlated computationally-heavy
metric(s) using the degree centrality metric. On similar lines,
the Pearson’s correlation coefficient between each of the
above four centrality metrics and the maximal clique size
per node (another node-level computationally-heavy metric,
the computation of which is a NP-hard problem) was evalu-
ated in [8].

In a recent work [9], a new metric called the local-
ized clustering coefficient complement-based degree cen-
trality (LCC′DC) has been proposed as a computationally-
light alternative to the computationally-heavy BWC metric.
LCC′DC is computed as the product of 1-LCC and DegC,
where LCC (local clustering coefficient) of a vertex [1] is a
measure of the probability that any two neighbors of the ver-
tex are connected and are computed as the ratio of the actual
number of edges between the neighbors of a vertex to that of
the maximum possible number of edges between the neigh-
bors of the vertex. For several real-world networks analyzed
in [9], the Pearson’s correlation coefficient values observed
for LCC′DC–BWC are larger than the correlation coefficient
values observed for DegC–BWC. In another recent work
[10], it was observed that compared to DegC, LCC′DC could
be used to more accurately predict BWC values using linear
regression (with the standard error of residual values smaller
than those incurred for regression using DegC). In both [9]
and [10], the correlation analysis was focused on BWC vs.
the other four centrality metrics (DegC, LCC′DC, EVC, and
CLC). In this paper, our correlation analysis is more com-
prehensive: the two computationally-light centrality metrics
(DegC and LCC′DC) vs. the three computationally-heavy
centrality metrics (EVC, BWC, and CLC).

In this paper, we identify three different levels of cor-
relation that could be evaluated between any two central-
ity metrics of the vertices (more specifically, between a
computationally-light metric and a computationally-heavy
metric) in complex network graphs: (i) a pairwise relative
ordering-based correlation that would be a quantitative mea-
sure of how well the relative ordering of a pair of vertices
based on a computationally-light metric could be consid-
ered as the relative ordering of the same pair of vertices
with respect to a computationally-heavy metric. For exam-
ple, if LCC′DC(vi ) < LCC′DC(v j ), how sure are we to say
BWC(vi ) < BWC(v j ) for some two vertices vi and v j? (ii)
A network-wide ranking-based correlation that would be a
quantitative measure of the extent we could use the rank-
ing of the vertices based on a computationally-light metric

as the ranking of the vertices based on a computationally-
heavy metric. (iii) A linear regression-based correlation that
would be a quantitative measure of the extent we could use
the values of the computationally-light metric to predict the
values for a computationally-heavy metric.

The Pearson’s product–moment correlation coefficient is
not the only correlation measure used in statistical anal-
ysis. There are at least two other well-known correlation
measures such as the Spearman’s Rank-based correlation
measure [5] and the Kendall’s concordance-based correla-
tion measure [5] that are widely used in statistical analysis,
but not that commonly used in complex network analysis.We
opine that the Kendall’s correlation coefficient (rather than
the Pearson’s correlation measure) could be more apt to do
pairwise relative ordering of the vertices with respect to a
computationally-heavy metric based on the values incurred
for a computationally-light metric. Likewise, the Spearman’s
rank-based correlation coefficient could be an apt measure to
decide whether a computationally-light metric could be used
to rank the vertices in a graph in lieu of a computationally-
heavy metric. We claim that real-world network graphs are
more likely to incur different values for the correlation coef-
ficient with respect to each of the above three correlation
measures and the Pearson’s correlation coefficient alone can-
not be used to infer the nature of correlation between any
two centrality metrics with respect to each of the three levels
of correlation that are of interest in this paper. For exam-
ple, for the well-known US Politics Books Network [11],
we observed the following values for the Kendall’s, Pear-
son’s, and Spearman’s correlation coefficients with respect
to LCC′DC–BWC: 0.69, 0.78, and 0.86.

Our hypothesis in this paper is that the pairwise rela-
tive ordering-based correlation is the most strictest of the
three levels of correlation and the Kendall’s correlation coef-
ficient is more likely to be the lowest of the three correlation
coefficients evaluated for real-world network graphs. This
is because the correlation measure is quantified as the ratio
of the difference between the number of concordant pairs
and the number of discordant pairs to that of the total
number of pairs of vertices. A pair of vertices vi and v j

are said to be concordant with respect to centrality met-
rics X and Y if {X (vi ) < X (v j ) and Y (vi ) < Y (v j )} or
{X (vi ) > X (v j ) and Y (vi ) > Y (v j )} or {X (vi ) = X (v j )

and Y (vi ) = Y (v j )}; and discordant if {X (vi ) < X (v j ) and
Y (vi ) > Y (v j )} or {X (vi ) > X (v j ) and Y (vi ) < Y (v j )}.
The Kendall’s concordance-based correlation is evaluated at
the level of vertex–vertex pairs, and hence, for two cen-
trality metrics to be strongly correlated according to this
measure, the number of concordant pairs of vertices should
be significantly larger than the number of discordant pairs of
vertices. The presence of even few discordant pairs of ver-
tices could significantly reduce the value for the Kendall’s
correlation coefficient. For two different centrality metrics,
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if the number of concordant pairs of vertices is significantly
larger than the number of discordant pairs of vertices, the
network-wide ranking of the vertices with respect to the two
centrality metrics is expected to be more or less the same.
Likewise, the larger the number of concordant pairs of ver-
tices with respect to two centrality metrics X and Y , larger
the chances of a dependence of the values for the centrality
metric Y on the values for centrality metric X and vice-
versa. Unless the centrality value of a vertex with respect
to metric Y increases (or decreases) with an increase (or
decrease) in the centrality value of the vertex with respect
to metric X , it would be difficult to find a significant num-
ber of concordant pairs of vertices with respect to the two
centrality metrics X and Y . Hence, our hypothesis in this
paper is that the correlation coefficient between two central-
ity metrics for a real-world network graph could be bounded
below by the Kendall’s concordance-based correlation coef-
ficient. In other words, if we could evaluate the Kendall’s
concordance-based correlation coefficient between two cen-
trality metrics for a real-world network graph, the correlation
coefficients expected between the same two centrality met-
rics with respect to the other two correlation measures (i.e.,
the Spearman’s and Pearson’s measures) are more likely to
be at least the value obtained for the Kendall’s concordance-
based correlation coefficient.

We determine the correlation coefficient for DegC and
LCC′DC with each of the three computationally heavy cen-
trality metrics (EVC, BWC, and CLC) with respect to the
three different measures of correlation for a total of 50 real-
world networks. This generates a huge data set of correlation
coefficient values (50 networks * 2 computationally-light
metrics: DegC and LCC′DC * 3 computationally-heavymet-
rics: EVC, BWC, and CLC = 300 combinations) for each of
the three correlation measures. We determine the fraction
of the combinations for which each of the three correlation
coefficient measures incur the lowest and largest values. We
observe the Kendall’s concordance-based correlation coef-
ficient to be the lowest for 75% of the combinations, thus
confirming our hypothesis.

Throughout the paper, the terms ‘network’ and ‘graph’,
‘node’ and ‘vertex’, and ‘link’ and ‘edge’ are used inter-
changeably; they mean the same. All the real-world network
graphs and the example graphs analyzed in this paper are
modeled as undirected graphs. The adjacency matrix of an
undirected graph of V vertices is a V × V binary matrix,
wherein there is an entry of 1 for cells (vi , v j ) and (v j , vi )

if and only if there is an edge between the two vertices vi
and v j ; otherwise, the entry is a 0. The rest of the paper
is organized as follows: Sect. 2 reviews the five centrality
metrics DegC, LCC′DC, EVC, BWC, and CLC, and illus-
trates their computation with an example graph. Section 3
reviews the three correlation measures (Kendall’s, Spear-
man’s, and Pearson’s) and illustrates their computation for

a computationally-light metric vs. a computationally-heavy
metric computed for the example graph in Sect. 2. Section 4
presents the 50 real-world networks analyzed in this paper
and tabulates the values for some of the fundamental metrics.
We also tabulate the computation time for the five central-
ity metrics (on the 50 real-world networks) justifying their
classification as computationally-light or computationally-
heavy. Section 5 presents the results of the correlation
analysis conducted on the 50 real-world networks on the basis
of computationally-light vs. computationally-heavy central-
ity metrics with respect to the three correlation measures.
Section 6 discusses related work and highlights the unique
contributions of the work conducted in this paper. Section 7
concludes the paper.

2 Review of centrality metrics

Centrality metrics quantify the importance of a vertex with
respect to their position in a graph. In this paper, we con-
sider centrality metrics on the basis of whether they are
computationally-light or computationally-heavy.We identify
the degree centrality (DegC) [1] and the recently proposed
localized clustering coefficient complement-based degree
centrality (LCC′DC) [9] as the two computationally-light
centrality metrics (as they could be computed quickly with
time; seeSect. 4) and identify the other threewell-knowncen-
trality metrics: eigenvector centrality (EVC) [2], between-
ness centrality (BWC) [3], and closeness centrality (CLC)
[4] as the computationally-heavy metrics. In this section, we
briefly review each of these five metrics and illustrate their
computation with a running example graph.

2.1 Degree centrality

The degree centrality (DegC) of a vertex is the number of
neighbors incident on the vertex. Figure 1 illustrates the
degree centrality of the vertices (listed above the vertices)
in the example graph used in Sects. 2 and 3. A key weakness
of the degree centrality metric is that the metric can take only
integer values and ties among vertices (with same degree) is
quite common and unavoidable in network graphs of any size
(in the graph of Fig. 1, we observe five of the nine vertices to
have a degree of 3). Due to this inherent weakness, we opine
that degree centrality might not be an apt metric for network-
wide ranking of the vertices or pairwise relative ordering of
the vertices in lieu of the computationally-heavy metrics,
even though DegC has been observed [5,6] to be strongly
correlated with the computationally-heavy centrality metrics
(EVC, BWC, and CLC) with respect to the Pearson’s corre-
lation measure for linear dependence.
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Fig. 1 Degree centrality of the vertices in an example graph

2.2 Eigenvector centrality

The eigenvector centrality (EVC) of a vertex is a measure of
the degree of the vertex as well as the degree of its neighbors
[2]. The EVC of the vertices is a column vector computed
using the power-iteration algorithm [12]. The algorithm takes
the adjacency matrix of the graph (say, A[vi , v j ] for 1 ≤ vi ,
v j ≤ V , where V is the number of vertices) as input and pro-
cesses it through a sequence of iterations. The EVC column
vector is initialized to a unit vector (all the entries are 1s). In
the first iteration, we multiply the adjacency matrix A with
the EVC column vector of all 1s and divide the entries in the
product vector P (also a column vector) by the normalized
value of its entries. For the subsequent iterations, we set the
EVC column vector to be the product vector obtained (after
dividing the individual entries with the normalized value) at

the end of the previous iteration.Wecontinue the iterations by
multiplying the adjacency matrix with the EVC column vec-
tor obtained at the endof the previous iteration. The algorithm
stops when the entries in the EVC column vector converge
(i.e., do not change further to a certain level of precision) and
the vector is then called the principal eigenvector.

There is an entry for each vertex in the principal eigen-
vector and the values of these entries correspond to the
eigenvector centrality of the vertices. The normalized value
of the entries in the final product vector that is transformed
to the principal eigenvector is called the principal eigen-
value (a.k.a. the spectral radius) of the adjacency matrix of
the network graph. The power-iteration method is of time-
complexity �(V 3) as we do �(V 2) multiplications in each
iteration (to compute the product vector) and there could be
at most V iterations before the entries in the product vec-
tor converge and the product vector becomes the principal
eigenvector.

Figure 2 presents an example to illustrate the computation
of the principal eigenvector (i.e., the EVC of the vertices) for
the example graph. The example aptly illustrates the impact
of the DegC and EVC of the neighbors of a vertex on the
EVC of the vertex. We notice that though vertices 8 and 9
have the samedegree of 2, vertex 9has a relatively largerEVC
(0.290) compared to vertex 8 (0.069): this is because, vertex 9
is attached to two neighboring vertices (vertices 1 and 5) that
have a larger DegC as well as a larger EVC, whereas, vertex
8 is attached to two neighboring vertices (vertices 4 and 7)
that have a relatively lower DegC and lower EVC values.

Fig. 2 Eigenvector centrality of the vertices in an example graph
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2.3 Betweenness centrality

The betweenness centrality (BWC) of a vertex is a mea-
sure of the number of the shortest paths between any two
vertices that go through the vertex [3]. The BWC of a ver-
tex vi is quantitatively computed as follows: BWC(vi ) =
∑

v j �=vi
vk �=vi

#spvi
(v j ,vk )

#sp(v j ,vk )
, where #sp(v j , vk) is the total number of

shortest paths between any two vertices v j and vk (other than
vi ) and #spvi

(v j , vk) is the number of such shortest paths
between vertices v j and vk that go through vertex vi .

BWC is a computationally-heavymetric and the best algo-
rithm known so far is the classical Brandes’ algorithm [13] of
time-complexity�(V 2+V E) for undirectedgraphs.Wenow
brieflydescribe a breadthfirst search (BFS)-based implemen-
tation [14] of the Brandes’ algorithm.We compute a BFS tree
rooted at each of the vertices in the graph; we keep track of
the level number of every vertex (say, vi in general) in each
of these BFS trees. The level number of a vertex vi in a BFS
tree rooted at vertex v j corresponds to the number of hops on
the shortest path from vertex v j to vi . One or more vertices
could exist at a particular level in the BFS trees; a vertex vx
is considered to be a predecessor for a vertex vy in a BFS
tree if there exists an edge between vx and vy and vx is at a
level one less than the level of vy (i.e., vx is relatively closer
to the root of the BFS tree). The root of a BFS tree is con-
sidered to be at level 0 for the particular tree. The number
of the shortest paths from the root of a BFS tree to itself
is 1. The number of shortest paths for a vertex vi from the
root v j of a BFS tree is the sum of the number of shortest
paths from the root v j to each of the predecessors of vi in the
BFS tree rooted at v j . Using the level numbers and the set of
predecessors of a vertex in a BFS tree rooted at a vertex v j ,
we could calculate the number of the shortest paths from the
root v j to every other vertex in the graph. To calculate the
number of the shortest paths from two vertices v j to vk that
go through vertex vi , we would simply take the maximum of
the number of shortest paths from v j to vi (on the BFS tree
rooted at v j ) and the number of the shortest paths from vk to
vi (on the BFS tree rooted at vk). We can then calculate the

ratio BWC(vi ; v j , vk) = #spvi
(v j ,vk )

#sp(v j ,vk )
for every vertex vi with

respect to the pair of vertices v j and vk (v j �= vi and vk �= vi )

and add these ratios to calculate the BWC of a vertex vi . Fig-
ure 3 illustrates the computation of the BWC of the vertices
in the example graph of Figs. 1 and 2. To avoid cluttering in
the figure, we only show the non-zero BWC fractions of a
vertex with respect to the pairs of vertices.

2.4 Closeness centrality

The closeness centrality (CLC) of a vertex [4] is a measure of
the closeness of the vertex to the rest of the vertices in a graph.
The CLC of a vertex is computed as the inverse of the sum of

the hop counts of the shortest paths from the vertex to the rest
of the vertices in the graph. To determine the CLC of a vertex,
we could use the �(V + E)–BFS algorithm to determine a
shortest path tree rooted at the vertex and find the sum of
the level numbers of the vertices on this shortest path tree.
We want to maintain the convention that larger the centrality
value for a vertex, more important is the vertex. Hence, we
find the inverse of the final sum of the level numbers of the
vertices on the BFS tree of a vertex and use it as the CLC of
the vertex (rather than using just the sum of the level numbers
as the CLC). Since we need to run the BFS algorithm once
for each vertex, the overall time complexity to determine
the CLC of the vertices is �(V (V + E)) = �(V 2 + V E).

Figure 4 illustrates the distance matrix (hop counts of the
shortest paths between any two vertices) for the example
graph of Figs. 1, 2 and 3 and also displays the CLC of the
vertices.Vertex 1 is the closest vertex to the rest of the vertices
(sum of the distances is 12, the minimum) and hence has the
largest CLC value of 1/12 = 0.083.

2.5 Localized clustering coefficient complement-based
degree centrality

The localized clustering coefficient (LCC) of a vertex is a
measure of the probability for any two neighbors of the vertex
to be connected [1]. The LCC of a vertex is computed as the
ratio of the actual number of links between the neighbors of
the vertex to that of the maximum possible number of links
between the neighbors of the vertex [1]. The LCC of a vertex
ranges from 0.0 to 1.0. If any two neighbors of a vertex are
directly connected to each other, then the LCC of the vertex
is 1.0. On the hand, if no two neighbors of a vertex have a
link between them, then the LCC of the vertex is 0.0. Note
that the LCC of a vertex vi with just one neighbor is 1.0 as
the neighbor is connected to itself and need not go through
the vertex vi to reach itself.

If two neighbors v j and vk of a vertex vi are not directly
connected to each other, then it is more likely that the two
vertices would use vertex vi for the shortest path commu-
nication. The larger the fraction of the pairs of neighbors
of a vertex that are not directly connected to each other
(i.e., lower the LCC of a vertex), the larger the chances for
several of the neighbors of the vertex to go through the ver-
tex for the shortest path communication. This observation
leads to the proposal of a new centrality metric [9] called
the local clustering coefficient complement-based degree
centrality (LCC′DC). The local clustering coefficient com-
plement (LCC′ = 1-LCC) essentially captures the probability
that any two neighbors of a vertex would go through the ver-
tex for shortest path communication. TheLCC′DCof a vertex
is simply the product of LCC′ andDegC, the degree centrality
of the vertex.

The hypothesis behind the proposal for LCC′DC is that
larger the number of neighbors for a vertex and larger the
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Fig. 3 Betweenness centrality of the vertices in an example graph

fraction of pairs of these neighbors going through the vertex
for the shortest path communication, larger the chances of
the vertex having a higher BWC. It has been observed in [9]
that LCC′DC is strongly correlated to BWC for a suite of 18
real-world networks of different domains (a subset of the net-
works analyzed in this paper) with wide-ranging variations
in degree distribution. Note that to compute the BWCof even
a single vertex, we would need to determine the shortest path
trees rooted at every vertex. On the other hand, LCC′DC is
a computationally-light metric that could be computed sim-
ply on the basis of the two-hop neighborhood of a vertex.
Figure 5 illustrates the computation of the LCC′DC of the
vertices in the example graph of Figs. 1, 2, 3 and 4. A com-
parison of the BWC and the LCC′DC values incurred for the
example graph in Figs. 3 and 5 indicates a strong correla-
tion between the two metrics. Vertices 1 and 2 are the top
two vertices to have the largest BWC values of 34 and 30,
respectively; vertices 1 and 2 are also the top two vertices

to have the largest LCC′DC values of 3.0 and 2.0, respec-
tively. Likewise, the BWC of vertices 3, 6, 8, and 9 are 0.0
each and the LCC′DC values of these vertices are also 0.0
each.

3 Levels of correlation and the correlation
coefficient measures

We identify three different levels of correlation that could be
explored between a computationally-light centrality metric
and computationally-heavy centrality metric. For discussion
purposes, let X be a computationally-light centrality met-
ric and Y be a computationally-heavy centrality metric. The
three levels of correlation that are of interest in this paper are
as follows:

(i) Pairwise relative ordering of the vertices: For any two
vertices vi and v j , we are interested to quantify how
well we can use the relative ordering of the two vertices
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Fig. 4 Closeness centrality of the vertices in an example graph

with respect to the computationally-light metric X (i.e.,
whether X (vi ) < X (v j ) or X (vi ) > X (v j ) or X (vi ) =
X (v j )) as the relative ordering of the same two vertices
with respect to the computationally-heavy metric Y .

(ii) Network-wide ranking of the vertices: We are interested
to quantify howwell we can use the network-wide rank-
ing of the vertices with respect to a computationally-
light metric Xas the network-wide ranking of the
vertices with respect to a computationally-heavy metric
Y .

(iii) Predicting the actual centrality values: We are inter-
ested to quantify how well we can predict the actual
centrality values for the vertices with respect to a
computationally-heavy metric Y based on the actual
centrality values for the vertices with respect to a
computationally-light metric X .

The Pearson’s product–moment-based correlation mea-
sure (r) has been the commonly usedmeasure in the literature

(e.g., [5,6]) to assess the correlation between centrality
metrics for complex networks. However, the Pearson’s cor-
relation measure can accurately capture only one of the three
levels of correlation (i.e., predicting the actual centrality val-
ues) and not the other two levels of correlation. TheKendall’s
concordance-based correlation measure (τ ) and the Spear-
man’s rank-based correlation measure (ρ) are the correlation
measures that can effectively capture the pairwise relative
ordering of the vertices and the network-wide ranking of the
vertices, respectively. This is quite evident from their formu-
lation itself (as will be seen in this section). The values for all
the three correlation coefficient measures range from −1 to
1; the closer is the value to 1 or −1, the more stronger (pos-
itive or negative) the correlation between the two centrality
metrics in consideration. If the value for the correlation coef-
ficient is closer to 0, the two centrality metrics are considered
to be independent of each other.

Our hypothesis in this paper is that the pairwise relative
ordering of the vertices is the most restrictive level of cor-
relation one could impose to assess the correlation among
vertices with respect to any node-level metric (like centrality
metric), and hence, theKendall’s concordance-based correla-
tion coefficient has a higher chance of being the lowest of the
correlation coefficient values (compared to Pearson’s r and
Spearman’s ρ) for the three levels of correlation. On the other
hand, we conjecture that the Spearman’s rank-based correla-
tion is the least restrictive of the three correlation measures
as it does not require the two centrality metrics to have a lin-
ear dependence (as is required for the Pearson’s correlation
measure) and minor differences in the rank of a vertex with
respect to the two centrality metrics in consideration does
not significantly affect the value for the correlation coeffi-
cient (see formulation 4 in Sect. 3.2 and the accompanying
discussion).

3.1 Kendall’s concordance-based correlation

A pair of vertices vi and v j are said to be concordant with
respect to centrality metrics X and Y if {X (vi ) < X (v j ) and
Y (vi ) < Y (v j )} or {X (vi ) > X (v j ) and Y (vi ) > Y (v j )}

Fig. 5 LCC′DC of the vertices in an example graph
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Fig. 6 Example to compute the Kendall’s concordance-based correlation coefficient

or {X (vi ) = X (v j ) and Y (vi ) = Y (v j )}. A pair of vertices
vi and v j are said to be discordant with respect to centrality
metrics X and Y if {X (vi ) < X (v j ) and Y (vi ) > Y (v j )} or
{X (vi ) > X (v j ) and Y (vi ) < Y (v j )}. The Kendall’s con-
cordance [5]-based correlation coefficient (τ ) is computed
(see formulation 1) as the ratio of the difference between the
number of concordant pairs (#conc.pairs) and the number of
discordant pairs (#disc.pairs) to that of the total number of
pairs of vertices (which is also the sum of the number of
concordant pairs and discordant pairs):

τ(X, Y ) = #conc.pairs(X, Y ) − #disc.pairs(X, Y )

#conc.pairs(X, Y ) + #disc.pairs(X, Y )
. (1)

Figure 6 illustrates an example to calculate the Kendall’s
concordance-based correlation between the LCC′DC and
BWC metrics. We use the alphabets ‘C’ (for concordance)
and ‘D’ (for discordance) to indicate whether a pair of ver-
tices is concordant or discordant. In this example graph, there
are a total of 9 × (9 − 1)/2 = 36 pairs of vertices that
could be tested for concordance. Except the two pairs of ver-
tices: pairs 4–5 and 5–7, all the other 34 pairs of vertices
are observed to be concordant with respect to LCC′DC and
BWC. Hence, the Kendall’s concordance-based correlation
coefficient τ (LCC′DC and BWC) = (34 − 2)/36 = 0.89.

Note that due to the nature of the formulation (# concor-
dant pairs − # discordant pairs) in the numerator, Kendall’s
concordance-based correlation coefficient has the tendency
to reduce appreciably even in the presence of few discordant
pairs. We more formally analyze the relationship between
the number of concordant pairs and the number of discordant
pairs on the Kendall’s correlation coefficient as follows. Let
fc(X, Y ) be the fraction of the concordant pairs of vertices
with respect to any two metrics X and Y ; the formulation for

Kendall’s concordance-based correlation coefficient could be
written as follows.

Fraction of concordant pairs of vertices, fc(X, Y ) =
#conc.pairs(X,Y )

#conc.pairs(X,Y )+#disc.pairs(X,Y )
:

1 − fc(X, Y ) = #disc.pairs(X, Y )

#conc.pairs(X, Y ) + #disc.pairs(X, Y )

τ (X, Y ) = #conc.pairs(X, Y )

#conc.pairs(X, Y ) + #disc.pairs(X, Y )

− #disc.pairs(X, Y )

#conc.pairs(X, Y ) + #disc.pairs(X, Y )

τ (X, Y ) = fc(X, Y ) − (1 − fc (X, Y )))

τ (X, Y ) = 2 fc(X, Y ) − 1. (2)

Figure 7 illustrates how τ(X, Y ) decreases with decrease
in fc(X, Y ). We can notice that for a 0.01 decrease in
fc(X, Y ), τ(X, Y ) decreases by 0.02.

3.2 Spearman’s rank-based correlation

The rank of a vertex with respect to a centrality metric is a
measure of where the vertex stands if the vertices in the net-
work are to be ordered in the decreasing order of the values
for the centrality metric (we assume decreasing order for all
the centralitymetrics). The earlier a vertex appears in the list-
ing with respect to a particular centrality metric, the higher
the rank for the vertex with respect to the metric. We use the
Spearman’s rank [5]-based correlation measure (ρ) to quan-
tify the extent of similarity in the ranking of the vertices with
respect to two centrality metrics. We calculate this correla-
tion coefficient measure as follows with respect to any two
centrality metrics (say X and Y ). For each centrality metric,
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Fig. 7 Relationship betweenKendall’s concordance-based correlation
coefficient and the fraction of concordant pairs

we first obtain a listing of the vertices in the decreasing order
of the centrality values. If two or more vertices have the same
centrality value, we break the tie in favor of the vertex with
the smaller ID. The index at which a vertex appears in this
list is the tentative ranking for the vertex. The final ranking
for a vertex with respect to a centrality metric is the same as
the tentative ranking for the vertex if it has no tie with any
other vertex for the centrality metric. If two or more vertices
have a tie with respect to a centrality metric, their final rank-
ing with respect to the centrality metric is the average of the
tentative rankings for the vertices with respect to the metric.
Let di be the difference in the final ranking for the vertices
with respect to the two centrality metrics X and Y , where
1 ≤ i ≤ n and n is the number of vertices in the graph.
The Spearman’s rank-based correlation coefficient ρ(X, Y )

is computed using formula (3):

ρ(X, Y ) = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
. (3)

Figure 8 illustrates the computation of the Spearman’s
rank-based correlation coefficient on the example graph of
Figs. 1, 2, 3, 4 and 5. With respect to BWC, we observe
vertices 4 and 7 to have tie (BWC = 6 for both) and we break
the tie on the basis of the vertex ID: vertex 4 with a lower
ID gets a tentative rank of 3 and vertex 7 gets a tentative
rank of 4; the final ranking for the two vertices is the average
of their tentative rankings ((3 + 4)/2 = 3.5). A similar tie
between the two vertices exists with respect to LCC′DC.
We also observe tie between vertices 3, 6, 8, and 9 with
respect to both BWC and LCC′DC. We observe a non-zero
difference in the ranking of the vertices for only three of the
nine vertices and the magnitudes of these differences are not
that high to significantly reduce the correlation coefficient
value (0.95).

With respect to formulation (3), for larger values of n, the
term in the denominator n(n2 −1) dominates the summation
term

∑n
i=1 d

2
i in the numerator.Hence, even if the differences

in the ranking of the vertices are larger, the Spearman’s rank-
based correlation coefficient is more likely to relatively stay
high (compared to the Kendall’s measure) for graphs with
larger number of vertices. Using formulation (3), we could
also extract an upper bound for the average of the absolute
difference (per vertex) in the final ranking for the vertices
with respect to two data sets X and Y (in this case, the cen-
tralitymetrics), so that theSpearman’s rank-based correlation
coefficient is positive (i.e.,>0) and is at least a targeted value
(indicated using ρ

(X,Y )
tgt , such that 0 < ρ

(X,Y )
tgt ≤ 1). The

upper bound is shown in formulation (4), with n2 − 1 ∼ n2.
For a given ρ

(X,Y )
tgt value, we observe the upper bound to lin-

early increase proportional with increase in the number of
vertices in the graph (thus confirming our earlier assertion):

For ρ(X, Y ) ≥ ρ
(X,Y )
tgt , 1 − 6

∑n
i=1 d

2
i

n(n2 − 1)
≥ ρ

(X,Y )
tgt .

That is,

√
∑n

i=1 d
2
i

n2
≤

√
√
√
√

(
1 − ρ

(X,Y )
tgt

)
× n

6
. (4)

3.3 Pearson’s product–moment correlation

The Pearson’s product–moment correlation (r)when applied
for centrality metrics is a measure of the linear dependence
between any twometrics in consideration [5]. It is referred to
as the product–moment-based correlation as we calculate the
deviation of the data points from their mean value (‘mean’ is
also referred to as ‘first moment’ in statistics) and use them
in the formulation to calculate the correlation coefficient [see
formulation (5)]. If X andY are the data sets for two centrality
metrics, let Xi and Yi indicate the centrality values for the
individual vertices vi (1 ≤ i ≤ n, where n is the number of
vertices) and X and Y are the average of the centrality values;
r(X, Y ) is calculated as follows:

r(X, Y ) =
∑n

i=1 (Xi − X)(Yi − Y )
√∑n

i=1 (Xi − X)2
√∑n

i=1 (Yi − Y )2
. (5)

Figure 9 illustrates the computation of Pearson’s product–
moment correlation coefficient on the example graph of
Figs. 1, 2, 3, 4 and 5. We observe the Pearson’s correlation
coefficient to be 0.91 and is in between the values of 0.89
and 0.95 observed, respectively, for the Kendall’s and Spear-
man’s correlation coefficients. As seen for several real-world
networks analyzed in this paper, the Kendall’s correlation
coefficientmeasure is the lowest of the three correlation coef-
ficient values.
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Fig. 8 Example to compute the Spearman’s rank-based correlation coefficient

Fig. 9 Example to compute the Pearson’s product–moment correlation coefficient

4 Real-world networks

In this section, we provide a brief description of the 50 real-
world networks analyzed in this paper and tabulate the values
for some of the fundamental metrics for complex network
analysis observed for these networks as well as tabulate the
computation time per node of the five centrality metrics (dis-
cussed in Sect. 2) for these networks. All the real-world
networks are modeled as undirected graphs. Table 1 lists
the number of nodes and edges in these graphs as well as
the values for fundamental metrics like average node degree
(kavg), spectral radius ratio for node degree (λsp) [15], graph
density (Gd), and the number of components (#comps). The
spectral radius ratio for node degree [15] is a measure of the
variation in node degree and is calculated as the ratio of the
principal eigenvalue [2] of the adjacency matrix of the graph
to that of the average node degree. The spectral radius ratio
for node degree is independent of the number of vertices and
the actual degree values for the vertices in the graph. The
spectral radius ratio for node degree is always greater than
or equal to 1; the farther is the ratio from the value of 1, the
larger the variation in node degree. The spectral radius ratio
for node degree for the real-world network graphs analyzed

in this paper ranges from1.01 to 5.34 (indicating that the real-
world network graphs analyzed range from random networks
with smaller variation in node degree to scale-free networks
of larger variation in node degree). The individual references
to the real-world networks are also listed in Table 1.

The networks considered cover a broad range of cate-
gories (as listed below along with the number of networks in
each category): (I) acquaintance network (12), (II) friendship
network (9), (III) co-appearance network (6), (IV) employ-
ment network (4), (V) citation network (3), (VI) collaboration
network (3), (VII) literature network (3), (VIII) biological
network (3), (IX) political network (2), (X) gamenetwork (2),
(XI) transportation network (1), (XII) geographical network
(1), and (XIII) trade network (1). A brief description about
each category of networks is as follows: an acquaintance
network is a kind of social network in which the participant
nodes slightly (not closely) know each other, as observed
typically during an observation period. A friendship network
is a kind of social network in which the participant nodes
closely know each other and the relationship is not captured
over an observation period. A co-appearance network is a
network typically extracted from novels/books in such a way
that two characters or words (modeled as nodes) are con-
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Table 1 Fundamental metric values of the real-world network graphs used for correlation analysis

# Net. Network name Refs. λsp #Nodes #Edges kavg Gd #Comps

1 ADJ Word Adjacency NetIII [17] 1.73 112 425 7.589 0.068 1

2 AKN Anna Karnenina NetIII [18] 2.48 140 494 7.057 0.051 2

3 JBN Jazz Band NetIV [19] 1.45 198 2742 27.697 0.141 1

4 CEN C. Elegans Neural NetVIII [20] 1.68 297 2148 14.465 0.049 1

5 CLN Centrality Literature NetV [21] 2.03 118 613 10.39 0.089 1

6 CGD Citation Graph Draw. NetV [22] 2.24 259 640 4.942 0.019 6

7 CFN Copperfield NetIII [18] 1.83 89 407 9.146 0.104 2

8 DON Dolphin NetI [23] 1.40 62 159 5.129 0.084 1

9 DRN Drug NetI [24] 2.76 212 284 2.679 0.013 9

10 DLN Dutch Lit. 1976 NetVII [25] 1.49 37 81 4.378 0.122 2

11 ERD Erdos Collaboration NetVI [26] 3.00 433 1314 6.069 0.014 3

12 FMH Faux Mesa High Sch. NetII [27] 2.81 147 202 2.748 0.019 11

13 FHT Friendship Hi-Tech FirmII [28] 1.57 33 91 5.515 0.172 1

14 FTC Flying Teams Cade NetIV [29] 1.21 48 170 7.083 0.151 1

15 FON US Football NetX [30] 1.01 115 613 10.661 0.094 1

16 CDF College Dorm FraternityI [31] 1.11 58 967 33.345 0.585 1

17 GD96 Graph Drawing 1996 Net V [26] 2.38 180 228 2.533 0.014 1

18 MUN Marvel Universe NetIII [32] 2.54 167 301 3.605 0.022 20

19 GLN Graph Glossary NetVII [26] 2.01 67 118 3.522 0.053 4

20 HTN Hypertext 2009 NetI [33] 1.21 115 2164 37.635 0.33 2

21 HCN Huckleberry Co. NetIII [18] 1.66 76 302 7.947 0.106 4

22 ISP Infec. Socio-Patt. NetI [33] 1.69 309 1924 12.453 0.04 1

23 KCN Karate Club NetI [34] 1.47 34 78 4.588 0.139 1

24 KFP Korea Family Plan. NetI [35] 1.70 37 85 4.595 0.128 2

25 LMN Les Miserables NetIII [18] 1.82 77 254 6.597 0.087 1

26 MDN Macaque Dom. NetVIII [36] 1.04 62 1167 37.645 0.617 1

27 MTB Madrid Train Bomb. NetI [37] 1.95 64 295 9.219 0.146 1

28 MCE Manufact. Comp. EmplIV [38] 1.12 77 1549 40.23 0.529 1

29 MSJ Social Net. Journal NetVI [39] 3.48 475 625 2.632 0.006 104

30 AFB Author Facebook NetII – 2.29 171 940 10.994 0.065 4

31 MPN Mexican Pol. Elite NetIX [40] 1.23 35 117 6.686 0.197 1

32 MMN ModMath NetII [26] 1.59 30 61 4.067 0.14 1

33 NSC Net. Science Co-authorVI [17] 5.51 1589 2743 3.45 0.002 269

34 PBN US Politics Books NetVII [11] 1.42 105 441 8.4 0.081 1

35 PSN Primary Sch. Contact NetI [41] 1.22 238 5539 46.546 0.196 1

36 PFN Prison Friendship NetII [42] 1.32 67 142 4.239 0.064 1

37 SJN San Juan Sur Family NetI [43] 1.29 75 155 4.133 0.056 1

38 SDI Scotland Corp. InterlockIV [44] 1.94 230 359 3.122 0.014 5

39 SPR Senator Press Release NetIX [45] 1.57 92 477 10.37 0.114 1

40 SWC Soccer World Cup NetX [26] 1.45 35 118 6.743 0.198 1

41 SSM Sawmill Strike Comm. NetI [46] 1.22 24 38 3.167 0.138 1

42 TEN Taro Exchange NetI [47] 1.06 22 39 3.545 0.169 1
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Table 1 continued

# Net. Network name Refs. λsp #Nodes #Edges kavg Gd #Comps

43 TWF Teenage Fem. Friend NetII [48] 1.49 47 77 3.277 0.071 4

44 UKF UK Faculty Friend NetII [49] 1.35 83 578 13.928 0.17 2

45 APN US Airports 1997 NetXI [26] 3.22 332 2126 12.807 0.039 1

46 USS US States NetXII [50] 1.25 49 107 4.367 0.091 1

47 RHF Residence Hall Friend NetII [51] 1.27 217 1839 16.949 0.078 1

48 WSB Windsurfers Beach NetII [52] 1.22 43 336 15.628 0.372 1

49 WTN World Trade Metal NetXIII [53] 1.38 80 875 21.875 0.277 1

50 YPI Yeast PPI NetVIII [54] 3.20 1870 2203 2.387 0.001 149

nected if they appear alongside each other. An employment
network is a network in which the interaction/relationship
between people is primarily due to their employment require-
ments and not due to any personal liking. A citation network
is a network in which two papers (nodes) are connected if
one paper cites the other paper as reference. A collaboration
network is a network of researchers/authors who are listed as
co-authors in at least one publication. A literature network
is a network of papers/terminologies/authors (other than col-
laboration, citation or co-authorship) involved in a particular
area of literature. A biological network is a network that
models the interactions between genes, proteins, animals of
a particular species, etc. A political network is a network
of entities (typically politicians) involved in politics. A game
network is a network of teams or players playing for different
teams and their associations. A transportation network is a
network of entities (like airports and their flight connections)
involved in public transportation. A geographical network is
a network of states and their shared borders in a country.
A trade network is a network of countries/people involved
in certain trade. More information about the individual real-
world networks can be found in [16].

We measure the computation time per node (total com-
putation time divided by the number of nodes) incurred for
each of the five centrality metrics for the 50 real-world net-
work graphs. The executions were conducted on a computer
with Intel Core i7-2620M CPU@ 2.70 GHz and an installed
main memory (RAM) of 8 GB. We ran the procedures for
each of the five centrality metrics on each of the 50 real-
world networks for 25 iterations and averaged the results.
Table 2 lists the average computation time per node for the
centrality metrics. Though there is no prescribed threshold
in the literature, we propose that a centrality metric could be
referred to as computationally-heavy if its average computa-
tion time per node is 0.01 millisecond or above (highlighted
in Table 2) for at least 50% of the real-world networks ana-
lyzed, provided the suite of real-world networks analyzed
is as diverse as it is in this paper (with respect to the num-
ber of nodes and edges and the fundamental metrics listed

in Table 1). We observe the degree centrality metric to be
computationally-light for all the real-world networks and the
LCC′DCmetric to be computationally-heavy for only 6% of
the real-world networks. Hence, we refer to the DegC and
LCC′DC metrics as computationally-light centrality met-
rics. On the other hand, we observe the CLC, EVC, and
BWC metrics to be computationally-heavy for 52, 84, and
100% of the 50 real-world networks studied. Hence, we
consider these three centrality metrics as computationally-
heavy.

5 Correlation analysis

In this section, we present in detail the results of the correla-
tion analysis conducted for the computationally-light (DegC
and LCC′DC) vs. computationally-heavy (CLC, EVC, and
BWC) centralitymetrics (six combinations ofmetrics) for the
50 real-world network graphs listed in Sect. 4. To validate our
hypothesis, we measure the following: (i) the difference in
the correlation coefficient values between any two correlation
measures; (ii) the fraction (a total of 50× 6 = 300 combina-
tions) of the 50 real-world networks and the six combinations
of computationally-light vs. computationally-heavy central-
ity metrics for which each of the three correlation measures
incur the lowest correlation coefficient values; and (iii) the
median of the correlation coefficient values observed for each
correlation level between a computationally-light metric and
a computationally-heavy metric.

Table 3 lists the values for the correlation coefficient
incurred with the three correlation measures (Kendall—
τ ; Spearman—ρ; Pearson—r) for DegC vs. {CLC, EVC,
BWC} and Table 4 lists the values for LCC′DC vs. {CLC,
EVC, BWC}. The correlation coefficient values reported in
Tables 3 and 4 are the average of 25 runs for each of the 300
combinations of computationally-light vs. computationally-
heavy centrality metrics and the real-world networks. In both
these tables,wehighlight the cells (combinations) forwhich a
correlationmeasure incurs the lowest value (in bold font) and
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Table 2 Computation time per node of the centrality metrics for the real-world network graphs

# Net. #Nodes #Edges Computation time per node (ms)

Computationally-light Computationally-heavy

DegC LCC′DC CLC EVC BWC

1 ADJ 112 425 0.00043 0.00723 0.09777 0.30250 2.40223

2 AKN 140 494 0.00068 0.00965 0.05050 0.44021 3.94329

3 JBN 198 2742 0.00017 0.04402 0.12066 0.22212 8.98010

4 CEN 297 2148 0.00018 0.01157 0.07825 0.47899 19.16182

5 CLN 118 613 0.00023 0.00404 0.05186 0.14542 1.45644

6 CGD 259 640 0.00022 0.00083 0.11286 0.48031 19.13170

7 CFN 89 407 0.00017 0.00137 0.00674 0.02854 0.46247

8 DON 62 159 0.00018 0.00071 0.00419 0.02097 0.31935

9 DRN 212 284 0.00025 0.00058 0.10759 0.27104 17.85425

10 DLN 37 81 0.00027 0.00089 0.00216 0.01919 0.12676

11 ERD 433 1314 0.00019 0.00110 0.20591 1.16956 48.16531

12 FMH 147 202 0.00024 0.00050 0.04871 0.12871 5.54497

13 FHT 33 91 0.00024 0.00103 0.00182 0.01485 0.13364

14 FTC 48 170 0.00017 0.00079 0.00292 0.01646 0.18542

15 FON 115 613 0.00019 0.00121 0.01330 0.08209 1.36739

16 CDF 58 967 0.00028 0.00997 0.01810 0.03414 0.67879

17 GD96 180 228 0.00017 0.00052 0.02817 0.09189 4.26378

18 MUN 167 301 0.00018 0.00054 0.02305 0.06587 1.50102

19 GLN 67 118 0.00030 0.00046 0.00910 0.03149 0.32149

20 HTN 115 2164 0.00018 0.00724 0.01165 0.05365 1.79522

21 HCN 76 302 0.00026 0.00074 0.00855 0.02579 0.32276

22 ISP 309 1924 0.00017 0.00130 0.10476 0.55414 21.06320

23 KCN 34 78 0.00018 0.00047 0.00147 0.00529 0.06882

24 KFP 37 85 0.00030 0.00097 0.00324 0.01216 0.16216

25 LMN 77 254 0.00016 0.00083 0.00545 0.01792 0.37195

26 MDN 62 1167 0.00026 0.00560 0.00694 0.03210 0.67774

27 MTB 64 295 0.00017 0.00063 0.00500 0.01609 0.32844

28 MCE 77 1549 0.00017 0.00516 0.00558 0.02377 0.74909

29 MSJ 475 625 0.00020 0.00038 0.18269 0.63120 28.86568

30 AFB 171 940 0.00019 0.00137 0.03135 0.38982 3.36468

31 MPN 35 117 0.00017 0.00086 0.00171 0.00743 0.10314

32 MMN 30 61 0.00027 0.00047 0.00233 0.00700 0.08767

33 NSC 1589 2743 0.00016 0.00072 2.52165 31.21962 457.18801

34 PBN 105 441 0.00020 0.00092 0.01848 0.07352 1.05924

35 PSN 238 5539 0.00016 0.01128 0.04836 0.31601 13.87235

36 PFN 67 142 0.00016 0.00048 0.00567 0.01925 0.33701

37 SJN 75 155 0.00017 0.00055 0.00573 0.02573 0.42813

38 SDI 230 359 0.00018 0.00049 0.05117 0.22422 10.97583

39 SPR 92 477 0.00058 0.00133 0.03793 0.14533 0.79196

40 SWC 35 118 0.00017 0.00054 0.00143 0.00743 0.08714

41 SSM 24 38 0.00021 0.00033 0.00125 0.00417 0.03292

42 TEN 22 39 0.00018 0.00032 0.00091 0.00364 0.03045

43 TWF 47 77 0.00017 0.00032 0.00255 0.00979 0.07106
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Table 2 continued

# Net. #Nodes #Edges Computation time per node (ms)

Computationally-light Computationally-heavy

DegC LCC′DC CLC EVC BWC

44 UKF 83 578 0.00016 0.00149 0.00675 0.02675 0.62578

45 APN 332 2126 0.00016 0.00323 0.09518 0.49545 18.50593

46 USS 49 107 0.00041 0.00045 0.00265 0.01224 0.17469

47 RHF 217 1839 0.00016 0.00212 0.04083 0.24429 9.31433

48 WSB 43 336 0.00019 0.00128 0.00209 0.00977 0.17558

49 WTN 80 875 0.00058 0.00283 0.02513 0.10938 0.67938

50 YPI 1870 2203 0.00018 0.00086 3.45965 77.53588 834.37062

Fraction of networks for which average
computation time per node ≥ 0.01 ms

0/50 = 0.0 3/50 = 0.06 26/50 = 0.52 42/50 = 0.84 50/50 = 1.00

Table 3 Degree centrality vs. computationally-heavy metrics: results of correlation analysis

# Net. Degree
centrality (DegC)
vs. closeness cen-
trality (CLC)

Degree centrality
(DegC) vs. eigen-
vector centrality
(EVC)

Degree centrality
(DegC) vs.
betweenness cen-
trality (BWC)

Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson

1 ADJ 0.764 0.901 0.841 0.801 0.929 0.957 0.773 0.901 0.915

2 AKN 0.626 0.767 0.846 0.763 0.897 0.936 0.657 0.759 0.892

3 JBN 0.736 0.890 0.859 0.750 0.890 0.901 0.579 0.744 0.610

4 CEN 0.553 0.738 0.700 0.629 0.811 0.871 0.736 0.889 0.780

5 CLN 0.847 0.956 0.282 0.892 0.976 0.961 0.750 0.903 0.825

6 CGD 0.754 0.893 0.497 0.722 0.876 0.810 0.745 0.890 0.797

7 CFN 0.882 0.945 0.908 0.870 0.965 0.935 0.697 0.818 0.808

8 DON 0.548 0.718 0.713 0.512 0.627 0.720 0.667 0.814 0.598

9 DRN 0.718 0.856 0.608 0.603 0.758 0.650 0.758 0.875 0.649

10 DLN 0.856 0.953 0.908 0.768 0.904 0.947 0.672 0.804 0.791

11 ERD 0.709 0.858 0.261 0.675 0.827 0.916 0.708 0.860 0.782

12 FMH 0.739 0.871 0.624 0.541 0.704 0.558 0.711 0.832 0.630

13 FHT 0.866 0.956 0.409 0.812 0.920 0.937 0.755 0.902 0.816

14 FTC 0.650 0.802 0.837 0.596 0.730 0.822 0.582 0.723 0.783

15 FON 0.272 0.344 0.291 0.606 0.722 0.750 0.260 0.336 0.282

16 CDF 0.998 1.000 0.990 0.972 0.991 0.997 0.809 0.940 0.857

17 GD96 0.552 0.659 0.513 0.568 0.684 0.844 0.759 0.859 0.951

18 MUN 0.395 0.486 0.303 −0.356 −0.479 −0.712 0.603 0.699 0.704

19 GLN 0.664 0.806 0.366 0.578 0.718 0.853 0.773 0.888 0.932

20 HTN 0.990 0.999 0.993 0.954 0.995 0.994 0.899 0.983 0.829

21 HCN 0.743 0.874 0.241 0.791 0.922 0.936 0.552 0.656 0.829

22 ISP 0.602 0.786 0.722 0.644 0.813 0.893 0.566 0.737 0.469

23 KCN 0.786 0.895 0.772 0.647 0.775 0.917 0.811 0.905 0.918

24 KFP 0.766 0.877 0.470 0.843 0.945 0.931 0.370 0.500 0.467

25 LMN 0.551 0.675 0.800 0.738 0.868 0.847 0.612 0.745 0.747

26 MDN 0.997 1.000 0.992 0.940 0.990 0.994 0.807 0.936 0.935

27 MTB 0.737 0.872 0.341 0.682 0.835 0.924 0.622 0.746 0.729
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Table 3 continued

# Net. Degree
centrality (DegC)
vs. closeness cen-
trality (CLC)

Degree centrality
(DegC) vs. eigen-
vector centrality
(EVC)

Degree centrality
(DegC) vs.
betweenness cen-
trality (BWC)

Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson

28 MCE 0.990 1.000 0.982 0.874 0.957 0.977 0.701 0.834 0.885

29 MSJ 0.488 0.580 0.217 0.090 0.120 0.508 0.453 0.520 0.392

30 AFB 0.272 0.303 −0.183 −0.267 −0.361 −0.720 0.424 0.576 0.259

31 MPN 0.643 0.780 0.881 0.692 0.838 0.907 0.780 0.905 0.892

32 MMN 0.865 0.943 0.733 0.734 0.851 0.877 0.781 0.903 0.842

33 NSC 0.595 0.711 0.240 −0.092 −0.107 −0.511 0.416 0.485 0.431

34 PBN 0.418 0.585 0.582 0.515 0.663 0.670 0.515 0.677 0.712

35 PSN 0.869 0.974 0.952 0.895 0.983 0.982 0.749 0.913 0.838

36 PFN 0.761 0.884 0.875 0.733 0.863 0.843 0.659 0.804 0.849

37 SJN 0.486 0.618 0.672 0.413 0.536 0.664 0.577 0.722 0.812

38 SDI 0.416 0.520 0.379 0.398 0.512 0.324 0.660 0.792 0.737

39 SPR 0.870 0.968 0.930 0.866 0.968 0.976 0.723 0.872 0.835

40 SWC 0.864 0.954 0.941 0.874 0.964 0.968 0.742 0.863 0.905

41 SSM 0.610 0.696 0.782 0.585 0.714 0.780 0.584 0.708 0.851

42 TEN 0.524 0.629 0.612 0.650 0.774 0.776 0.624 0.750 0.859

43 TWF 0.279 0.344 0.326 0.235 0.294 0.523 0.338 0.433 0.218

44 UKF 0.759 0.904 0.918 0.799 0.928 0.944 0.624 0.794 0.782

45 APN 0.670 0.823 0.803 0.725 0.864 0.956 0.719 0.863 0.705

46 USS 0.582 0.746 0.755 0.667 0.799 0.832 0.730 0.864 0.744

47 RHF 0.724 0.881 0.891 0.715 0.876 0.892 0.669 0.843 0.841

48 WSB 0.904 0.971 0.975 0.909 0.983 0.982 0.866 0.964 0.895

49 WTN 0.993 0.999 0.987 0.851 0.954 0.983 0.845 0.949 0.908

50 YPI 0.398 0.506 0.191 0.330 0.422 0.349 0.834 0.917 0.847

# Lowest 27/50 0/50 23/50 46/50 0/50 4/50 41/50 0/50 9/50

# Largest 0/50 40/50 10/50 3/50 13/50 34/50 0/50 34/50 16/50

the largest value (in italics font) for the correlation coefficient.
We also plot the coefficient values (Kendall’s vs. Spearman’s
and Pearson’s correlation measures) in Figs. 10, 11 and 12
as well as the difference in the correlation coefficient values
between any two correlation measures (in Figs. 13, 14) to
facilitate visual analytics of the results.

5.1 On the sufficiency of a single correlation measure

The results presented inTables 3 and 4 andFigs. 10, 11 and 12
confirm our claim that a single correlation measure (like the
most commonly used Pearson’s correlation measure) is not
sufficient to assess all the three levels of correlation. There are
a total of 600 data points in Figs. 10, 11 and 12: if a single cor-
relation measure is sufficient to assess all the three levels of
correlation, we would need a majority of these data points to
fall on the diagonal line, implying that the correlation coeffi-
cient values determined using the three correlation measures

should be equal or close enough to each other. However, we
do not observe such a trend in Figs. 10, 11 and 12 as well as
in Tables 3 and 4. There are several instances in Figs. 10, 11
and 12 for which the values for the Kendall’s concordance-
based correlation coefficient is significantly different from
that of the Spearman’s and Pearson’s correlation coefficients,
implying the latter is not an appropriate measure to assess the
predictability of the pairwise relative ordering of the vertices
on the basis of a computationally-light metric in lieu of a
computationally-heavy metric.

For each combination of computationally-light vs.
computationally-heavy centrality metrics, we also determine
the difference in the correlation coefficient values between
any two correlation measures and plot a sorted list of this
difference in the correlation coefficient values (a total of 150
data points for each of the six combinations of the central-
ity metrics), as shown in Fig. 13. If all the three correlation
measures were to yield the same or close enough values for
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Table 4 LCC′DC vs. computationally-heavy metrics: results of correlation analysis

# Net. LCC′DC vs.
closeness
centrality (CLC)

LCC′DC vs.
eigenvector
centrality (EVC)

LCC′DC vs.
betweenness
centrality (BWC)

Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson

1 ADJ 0.655 0.824 0.799 0.676 0.850 0.920 0.789 0.916 0.930

2 AKN 0.507 0.621 0.769 0.540 0.664 0.855 0.951 0.994 0.948

3 JBN 0.726 0.891 0.782 0.608 0.788 0.793 0.717 0.860 0.757

4 CEN 0.499 0.685 0.661 0.535 0.719 0.825 0.774 0.923 0.816

5 CLN 0.720 0.874 0.221 0.759 0.908 0.907 0.837 0.954 0.887

6 CGD 0.697 0.852 0.432 0.633 0.797 0.744 0.846 0.956 0.860

7 CFN 0.649 0.767 0.903 0.622 0.766 0.823 0.954 0.993 0.897

8 DON 0.604 0.780 0.765 0.513 0.663 0.703 0.711 0.861 0.709

9 DRN 0.573 0.700 0.490 0.495 0.610 0.613 0.894 0.975 0.696

10 DLN 0.768 0.903 0.882 0.654 0.817 0.845 0.755 0.872 0.846

11 ERD 0.639 0.798 0.221 0.581 0.741 0.870 0.810 0.936 0.831

12 FMH 0.560 0.684 0.464 0.463 0.586 0.511 0.888 0.973 0.718

13 FHT 0.787 0.923 0.303 0.646 0.827 0.829 0.863 0.959 0.900

14 FTC 0.652 0.821 0.845 0.432 0.579 0.700 0.784 0.918 0.913

15 FON 0.366 0.506 0.552 −0.009 −0.007 0.011 0.447 0.608 0.673

16 CDF 0.895 0.981 0.982 0.850 0.967 0.946 0.869 0.968 0.935

17 GD96 0.552 0.659 0.562 0.568 0.684 0.860 0.759 0.859 0.942

18 MUN 0.379 0.472 0.222 −0.344 −0.440 −0.548 0.955 0.995 0.861

19 GLN 0.498 0.642 0.307 0.411 0.530 0.753 0.856 0.952 0.944

20 HTN 0.914 0.987 0.990 0.864 0.972 0.963 0.939 0.994 0.884

21 HCN 0.539 0.645 0.100 0.486 0.603 0.784 0.948 0.993 0.938

22 ISP 0.559 0.756 0.692 0.583 0.771 0.848 0.611 0.787 0.509

23 KCN 0.759 0.874 0.766 0.549 0.680 0.867 0.886 0.960 0.930

24 KFP 0.600 0.749 0.408 0.521 0.674 0.736 0.663 0.807 0.705

25 LMN 0.516 0.639 0.757 0.525 0.683 0.585 0.923 0.987 0.931

26 MDN 0.792 0.925 0.950 0.711 0.871 0.913 0.950 0.995 0.982

27 MTB 0.528 0.662 0.186 0.431 0.548 0.701 0.896 0.981 0.874

28 MCE 0.679 0.802 0.946 0.546 0.638 0.790 0.955 0.996 0.942

29 MSJ 0.331 0.401 0.277 0.061 0.076 0.082 0.955 0.996 0.610

30 AFB 0.429 0.549 0.123 −0.044 −0.045 −0.224 0.726 0.871 0.543

31 MPN 0.618 0.780 0.862 0.597 0.778 0.838 0.830 0.938 0.941

32 MMN 0.732 0.856 0.705 0.573 0.701 0.761 0.868 0.962 0.888

33 NSC 0.312 0.383 0.281 0.003 0.005 0.020 0.963 0.997 0.703

34 PBN 0.479 0.674 0.627 0.381 0.516 0.591 0.691 0.864 0.779

35 PSN 0.881 0.981 0.954 0.786 0.941 0.943 0.824 0.955 0.883

36 PFN 0.628 0.788 0.777 0.485 0.632 0.677 0.811 0.929 0.882

37 SJN 0.462 0.615 0.670 0.333 0.432 0.579 0.708 0.851 0.861

38 SDI 0.407 0.514 0.363 0.391 0.502 0.318 0.665 0.793 0.730

39 SPR 0.747 0.904 0.882 0.713 0.886 0.914 0.763 0.905 0.880
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Table 4 continued

# Net. LCC′DC vs.
closeness
centrality (CLC)

LCC′DC vs.
eigenvector
centrality (EVC)

LCC′DC vs.
betweenness
centrality (BWC)

Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson

40 SWC 0.621 0.768 0.841 0.597 0.767 0.848 0.771 0.883 0.927

41 SSM 0.570 0.686 0.804 0.390 0.494 0.613 0.795 0.906 0.847

42 TEN 0.562 0.703 0.717 0.401 0.520 0.636 0.850 0.939 0.942

43 TWF 0.382 0.478 0.344 0.177 0.241 0.388 0.795 0.904 0.696

44 UKF 0.637 0.806 0.848 0.554 0.719 0.801 0.818 0.949 0.908

45 APN 0.583 0.733 0.687 0.579 0.735 0.827 0.882 0.973 0.825

46 USS 0.528 0.701 0.693 0.579 0.733 0.766 0.751 0.889 0.770

47 RHF 0.748 0.907 0.902 0.596 0.777 0.808 0.787 0.934 0.903

48 WSB 0.850 0.962 0.967 0.810 0.947 0.940 0.912 0.986 0.948

49 WTN 0.820 0.929 0.992 0.672 0.827 0.948 0.956 0.995 0.944

50 YPI 0.390 0.496 0.199 0.324 0.414 0.333 0.910 0.980 0.849

# Lowest 32/50 0/50 18/50 47/50 0/50 3/50 32/50 0/50 18/50

# Largest 0/50 33/50 17/50 1/50 8/50 41/50 0/50 43/50 7/50

Fig. 10 Kendall’s vs. Spearman’s and Pearson’s correlation coefficients: {DegC, LCC′DC} vs. CLC. a DegC − CLC correlation analysis, b
LCC′DC − CLC correlation analysis

Fig. 11 Kendall’s vs. Spearman’s and Pearson’s correlation coefficients: {DegC, LCC′DC} vs. EVC. a DegC − EVC correlation analysis, b
LCC′DC − EVC correlation analysis
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Fig. 12 Kendall’s vs. Spearman’s and Pearson’s correlation coefficients: {DegC, LCC′DC} vs. BWC. a DegC − BWC correlation analysis, b
LCC′DC − BWC correlation analysis

Fig. 13 Distribution of the difference in the correlation coefficient values (sorted order) between any two correlation measures computed for
{DegC, LCC′DC} vs. {CLC, EVC, BWC} metrics

the correlation coefficient, we should have only obtained a
flat line for each of the plots in Fig. 13. However, we see
that the difference in the correlation coefficient values could
be as large as 0.3–0.7. We used threshold values of 0.05 and
0.10 for the difference in the correlation coefficient values
and determined the fraction of the 150 data points (for each
of the six combinations) for which the difference exceeds the
threshold (see Fig. 14). We observe that at least 40% of the
data points had a difference in the correlation coefficient val-
ues of 0.10 or above for each of the six combinations of the
centrality metrics evaluated using any two of the three cor-
relation measures. All of the above confirm our claim that a
single correlation measure would not be sufficient to assess
all the three levels of correlation that are of interest in this
paper.

5.2 Kendall’s correlation measure for lower bound of
the correlation coefficient

We observe the Kendall’s correlation coefficient measure
to incur the lowest of the correlation coefficient values
for 114 of the 150 combinations in the case of DegC vs.
the computationally-heavy centrality metrics {CLC, EVC,
BWC} and for 111 of the 150 combinations in the case of
BWC vs. the three computationally-heavy centrality met-
rics. Hence, we observe the Kendall’s concordance-based
correlation measure to be the lowest of the three correla-
tion coefficient values for a total of (114 + 111) = 225
of the 300 combinations. As we analyze real-world net-
works, whose degree distribution ranges from Poisson to
Power law (with spectral radius ratio for node degree [15]
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Fig. 14 Fraction of the data pointswith the difference in the correlation
coefficient values between any two correlation measures greater than
the threshold values of 0.05 and 0.10

ranging from 1.01 to 5.5) and covering different domains
(such as social networks, citation networks, geographical net-
works, co-appearance networks, biological networks, etc.),
we claim that 75% (or the equivalent decimal value of
225/300 = 0.75) could be considered as the probabil-
ity with which the Kendall’s concordance-based correlation
coefficient observed for a computationally-light metric vs. a
computationally-heavy metric would serve as a lower bound
for the correlation coefficient expected between the same
two centrality metrics under the Spearman’s and Pearson’s
measures for any real-world network. The Spearman’s rank-
based correlationmeasure did not incur the lowest among the
three correlation coefficient values for even one of the 300
combinations. The Pearson’s correlation measure incurred
the lowest correlation coefficient values for the remaining
25% of the 300 combinations of the computationally-light
vs. computationally-heavy centrality metrics and the real-
world network graphs.

Figures 10, 11 and 12 present a visual analysis of
the Kendall’s correlation coefficient values vs. the Spear-
man’s and Pearson’s correlation coefficient values obtained
for the computationally-light {DegC, LCC′DC} vs. the
computationally-heavy {CLC, EVC, BWC} centrality met-
rics. If a data point lies above the diagonal line, then the
Kendall’s correlation coefficient for that combination is
lower compared to the other correlation measure (either
Spearman’s or Pearson’s depending on the case). Hence,
larger the number of data points that are above the diagonal
line, the larger the number of combinations of centrality met-
rics and real-world network graphs for which the Kendall’s
correlation coefficient is the lowest. We observe more than
95%of the blue data points (corresponding to the Spearman’s
correlation measure) to be above the diagonal line in both the
sub-figures (a) and (b) of Figs. 10, 11 and 12. It is only the
25% of the red data points (corresponding to the Pearson’s

correlation measure) that are below the diagonal line, espe-
cially in the case of the computationally-light metrics vs.
the CLC centrality metric. The Kendall’s correlation coeffi-
cient is the lowest of the three correlation measures for more
than 90% of the data points corresponding to the case of the
computationally-light metrics vs. the EVC centrality metric.

The results thus convince us that the Kendall’s
concordance-based correlation measure should ideally be
the first correlation measure one should compute between
two centrality metrics (especially for correlation studies
involving computationally-light vs. computationally-heavy
centrality metrics) for a chosen real-world network and
decide to proceed further based on the correlation coef-
ficient value obtained. If we observe a strong correlation
between a computationally-light centrality metric and a
computationally-heavy centralitymetric for a real-world net-
work with respect to the Kendall’s measure, there would not
be even a need to compute the correlation coefficient with
respect to the other two correlation measures (Spearman’s
and Pearson’s) as there is a 0.75 chance that these corre-
lation coefficient values will be at least the value observed
for the Kendall’s concordance-based correlation coefficient.
From Tables 3 and 4, we also observe that the Kendall’s
correlation measure incurs the largest correlation coefficient
value for only 8 of the 300 combinations (i.e., less than 3% of
the 300 combinations). Hence, we could also conclude that
the Kendall’s correlation coefficient is more likely not the
largest of the three correlation values with a probability of
1 − 8/300 ∼ 0.97.

5.3 Analysis of the median values for the correlation
coefficient

Figure 15a–c display the median values for the correla-
tion coefficient observed for the three levels of correlation
between a computationally-light metric {DegC, LCC′DC}
with each of the computationally-heavymetrics {CLC, EVC,
BWC} for the 50 real-world network graphs. Figure 15d dis-
plays the median when the correlation coefficient values for
all the three levels of correlation are considered together (here
after referred simply as overall) for a particular combination
of the computationally-light and computationally-heavymet-
rics. Similar to the trend observed in Figs. 3, 4, 10, 11 and 12,
we also notice that irrespective of the computationally-light
vs. computationally-heavy centralitymetric combination, the
median of the correlation coefficient observed for pairwise
relative ordering of the vertices is the lowest among the corre-
lation coefficient values for all the three levels of correlation.

With respect to the individual combination of centrality
metrics, we consistently observe the degree centrality metric
(DegC) to exhibit higher levels of correlation with the close-
ness and eigenvector centrality metrics for each of the three
levels of correlation as well as overall, whereas we observe

123



RETRACTED ARTIC
LE

Vietnam J Comput Sci

Fig. 15 Median values for the correlation coefficient for each level of
correlation and all the three levels: {DegC, LCC′DC} vs. {CLC, EVC,
BWC}. a Pair-wise relative ordering (Kendall’s measure), b network-

wide ranking (Spearman’s measure), c predicting the actual values
(Pearson’s measure), d all three levels (Kendall’s, Spearman’s, Pear-
son’s measures)

the local clustering coefficient complement-based degree
centrality (LCC′DC)metric to exhibit relatively stronger cor-
relation with the betweenness centrality (BWC) metric for
each of the three levels of correlation as well as overall. We
thus conclude that for each of the three levels of correlation,
the DegC metric could serve as the computationally-light
alternative for the CLC and EVC metrics, whereas, the
LCC′DC metric could serve as the computationally-light
alterative for the BWC metric.

5.4 LCC′DC–BWC correlation vs. DegC–BWC
correlation

Weobserve theLCC′DCmetric to exhibit a very strong corre-
lationwith theBWCmetric (themost time-consumingmetric
of the three computationally-heavy centrality metrics) and
the data points (in Fig. 12b) are located relatively closer to
1 and also closer to each other, indicating that the correla-
tion coefficient values with respect to the three correlation
measures converge towards the largest possible value of 1
for a majority of the real-world network graphs. Consid-
ering a total of 150 LCC′DC–BWC correlation coefficient

values obtained with respect to the three correlation mea-
sures for the 50 real-world network graphs, we observe (see
Fig. 15d) the median to be 0.887 (the largest median value
for each of the six combinations of computationally-light
vs. computationally-heavy centrality metrics: see Fig. 15a–
c) and only 12 of the 150 correlation coefficient values (i.e.,
less than 10%) are below 0.7. On the other hand, the median
of the 150 DegC–BWC correlation coefficient values for the
three correlation measures analyzed for the 50 real-world
network graphs is 0.766 (see Fig. 15d), appreciably lower
than the median value of 0.887 for the LCC′DC–BWC cor-
relation.

5.5 Applications

The results of our correlation study confirm our hypothesis
that the Kendall’s concordance-based correlation coefficient
is more likely to be the smallest of the three correlation
coefficients computed between a computationally-light vs.
computationally-heavy metric for a real-world network. An
equally interesting observation is that the Spearman’s corre-
lation coefficient is not the lowest for any real-world network.
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Thus, if one were to observe a higher value for the Kendall’s
correlation coefficient between a computationally-light met-
ric (say, LCC′DC) and a computationally-heavy metric (say,
BWC), then it is more likely that the ranking of the ver-
tices with respect to the computationally-light metric is more
likely to be similar to the ranking of the vertices with respect
to the computationally-heavy metric.

6 Related work and our contributions

The idea of studying correlation between computationally-
light centrality metrics and the computationally-heavy cen-
trality metrics was recently mooted by Li et al. [5] in
which the Pearson’s correlation coefficient was used as the
correlation measure to evaluate the extent to which one
could rank the vertices using a computationally-light cen-
trality metric in lieu of a computationally-heavy centrality
metric. However, as seen in this paper, the Pearson’s cor-
relation coefficient values are different from those of the
Spearman’s and Kendall’s rank-based correlation measures
for at least the computationally-light centrality metrics vs.
computationally-heavy shortest path-based centrality met-
rics. In another recent work [55], it has been observed that the
Kendall’s concordance-based correlation measure is more
suitable to evaluate pairwise correlation, especially among
the top-k rankedvertices,whereas theSpearman’s correlation
measure is more suitable to evaluate rank-based correla-
tion involving all the vertices, especially if several of them
have equal ranks. The three correlation measures were also
recently used [56] to analyze the extent to which one can
predict flux changes using the functional centrality metric
[57] proposed to quantify the functional relevance of indi-
vidual biochemical reactions in metabolic networks. In [8],
the computationally-light degree centrality metric and the
computationally-heavy eigenvector centrality metric were
observed to be strongly correlated with the computationally-
heavymaximal clique size for a node (themaximal clique size
for a node is the clique of the largest size that a node is part
of) under all the three levels of correlation. The BWCmetric
has been observed to be weakly correlated (correlation coef-
ficient values in the range 0...0.5) with the maximal clique
size. Unlike the work in [8], wherein the correlation between
centrality metrics and maximal clique size was studied, in
this paper, we investigate the correlation among the central-
ity metrics themselves on the lines of computationally-light
{DegC, LCC′DC} vs. computationally-heavy {CLC, EVC,
BWC} centrality metrics. The LCC′DC metric was also not
considered in [8].

In [16], the author analyzed the assortativity of 50 real-
world network graphs (also considered in this paper) based
on each of the four centrality metrics DegC, BWC, EVC,
and CLC. The assortativity index of a network with respect

to a centrality metric is a quantitative measure of how similar
are the values for the end vertices of the edges with respect
to the centrality metric, and is measured as the Pearson’s
correlation coefficient of the centrality values of the end ver-
tices of the edges. Networks with larger positive (negative)
values for the assortative index are considered to be assorta-
tive (dissortative) with respect to the centrality metric under
consideration. Networks whose assortative index values are
closer to zero are considered to be neutral with respect to
the centrality metric considered. It was observed that real-
world networks are more likely to be neutral with respect
to DegC and BWC, and more likely to be assortative with
respect to EVC and CLC. Our work in this paper primar-
ily differs from [16] on these lines: we do not measure the
correlation coefficient between the centrality values of the
end vertices of the edges with respect to a metric. We rather
measure the correlation coefficient between the vertices with
respect to two different centrality metrics (computationally-
light vs. computationally-heavy). In addition, the correlation
coefficient in [16] was measured only using the Pearson’s
correlationmeasure; in this paper,we use three differentmea-
sures of correlation. Likewise, LCC′DC was not considered
in the assortativity analysis study of [16], whereas, LCC′DC
is considered in this paper.

In [58], the author developed a newcentralitymetric called
CIRank (that keeps track of the changes propagating among
classes in a software dependency network) and observed it
to be significantly correlated with the degree and PageRank
centrality metrics on the basis of the Spearman’s rank-based
correlation coefficient. In [59], the Kendall’s concordance-
based correlation measure was used to assess the correlation
between eight different centrality metrics that are suitable for
gene regulatory networks in E. Coli. It was observed that the
ranking of the genes with respect to the centrality metrics
is significantly different (leading to a low correlation coef-
ficient between any two centrality metrics), especially when
vertices (genes) with non-zero out degree are only consid-
ered. In another related study [60], theKendall’smeasurewas
used to study the correlation betweenDegC, CLC, BWC, and
EVCmetrics for theM.musculus protein–protein interaction
network. In [61], the authors studied the impact of removing
the top-k ranked vertices (with respect to a centrality met-
ric) on the traffic-carrying capacity of the remaining nodes
and the connectivity of ISP (Internet Service Provider) net-
works: removal of the top-kverticeswith respect to the locally
computable degree centrality metric had a similar impact on
the traffic-carrying capacity of the remaining nodes vis-a-
vis removal of the top-k vertices with respect to the globally
computable centrality metrics.

Though some of the recent works in the literature (as men-
tioned above) have also used the three correlation measures
(Kendall’s, Spearman’s and Pearson’s) for analyzing the cor-
relation between centrality metrics with respect to the three
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levels of correlation (pairwise relative ordering, network-
wide ranking, and prediction of the actual values), ours is the
first work to evaluate the three levels of correlation from the
point of view of computationally-light vs. computationally-
heavy centrality metrics and demonstrate that the pairwise
relative ordering of the vertices could be the most restrictive
and that the correspondingKendall’s concordance-based cor-
relation measure could serve (with a probability as large as
0.75) as the lower bound for correlation coefficient among
the three levels of correlation. We could also conclude that
the Kendall’s correlation coefficient is not the largest among
the correlation coefficients of the threemeasures with a prob-
ability of 0.97.

7 Conclusions

Weobserve the pairwise relative ordering of vertices based on
a computationally-light metric in lieu of a computationally-
heavy centrality metric to be the most restrictive of all the
three levels of correlation and the Kendall’s concordance-
based correlation coefficient (that is a measure of the level
of correlation to assess the pairwise relative ordering of ver-
tices) could be considered (with a probability as large as
0.75) to serve as the lower bound for correlation coefficient
between a computationally-light and computationally-heavy
centrality metric. Likewise, we could also conclude that
the Kendall’s correlation coefficient is more likely not
the largest of the three correlation measures (between a
computationally-light and computationally-heavy central-
ity metric) with a probability of 0.97. Such significant
observations on the nature of the correlation coefficient
values obtained for the centrality metrics (especially for
computationally-light vs. computationally-heavy metrics)
with respect to the Kendall’s concordance-based correlation
measure have been hitherto not reported in the literature.
To the best of our knowledge, it is not known in the lit-
erature which of these three commonly studied correlation
measures is likely to incur the lowest value for the correlation
coefficient when a computationally-light vs. computation-
ally heavy metric are correlated. Through this research, we
have established that the pairwise comparison-based cor-
relation is the most strongest form of correlation analysis
that one could conduct between a computationally-light vs.
computationally-heavy centrality metric. As an application
of this result, if one were to observe a higher (lower) value
for the Kendall’s concordance-based correlation coefficient
between a computationally-light metric (say, LCC’DC) vs.
a computationally-heavy metric (BWC), then one is more
likely to observe the ranking of the verticeswith respect to the
computationally-light metric to be more (less) similar to the

ranking of the vertices with respect to the computationally-
heavy metric.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Newman,M.E.J.: Networks: An Introduction, 1st edn. Oxford Uni-
versity Press, Oxford (2010)

2. Bonacich, P.: Power and centrality: a family of measures. Am. J.
Sociol. 92(5), 1170–1182 (1987)

3. Freeman, L.: A set of measures of centrality based on betweenness.
Sociometry 40(1), 35–41 (1977)

4. Freeman, L.: Centrality in social networks conceptual clarification.
Soc. Netw. 1(3), 215–239 (1979)

5. Li, C., Li, Q., Van Mieghem, P., Stamey, H.E., Wang, H.: Correla-
tion between centrality metrics and their application to the opinion
model. Eur. Phys. J. B 88(65), 1–13 (2015)

6. Meghanathan, N.: Correlation coefficient analysis of centrality
metrics for complex network graphs. In: Proceedings of the 4th
Computer Science Online Conference, (CSOC-2015). Intelligent
Systems inCybernetics andAutomationTheory:Advances in Intel-
ligent Systems and Computing, vol. 348, pp. 11–20, 27–30 April
2015 (2015)

7. Triola, M.F.: Elementary Statistics, 12th edn. Pearson, New York
(2012)

8. Meghanathan, N.: Maximal clique size vs. centrality: a correlation
analysis for complex real-world network graphs. In: Proceedings
of the 3rd International Conference on Advanced Computing, Net-
working, and Informatics. Springer Smart Innovation, Systems and
Technologies Series, vol. 44, pp. 95–101, 23–25 June 2015, Orissa,
India (2015)

9. Meghanathan, N.: A computationally lightweight and localized
centrality metric in lieu of betweenness centrality for complex net-
work analysis. Vietnam J. Comput. Sci. 4(1), 23–38 (2017)

10. Meghanathan, N., He, X.: Correlation and regression analysis for
node betweenness centrality. Int. J. Found. Comput. Sci. Technol.
6(6), 1–20 (2016)

11. Krebs, V.: Proxy networks: analyzing one network to reveal
another. Bulletin de Méthodologie Sociologique 79, 61–70 (2003)

12. Lay, D.C.: Linear Algebra and its Applications, 4th edn. Pearson,
New York (2011)

13. Brandes, U.: A faster algorithm for betweenness centrality. J.Math.
Sociol. 25(2), 163–177 (2001)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

15. Meghanathan, N.: Spectral radius as a measure of variation in node
degree for complex network graphs. In: Proceedings of the 7th
International Conference on u- and e-Service, Science and Tech-
nology, pp. 30–33, Haikou, China, December 2014 (2014)

16. Meghanathan, N.: Assortativity analysis of real-world network
graphs based on centrality metrics. Comput. Inf. Sci. 9(3), 7–25
(2016)

17. Newman, M.E.J.: Finding community structure in networks using
the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

18. Knuth, D.E.: The Stanford GraphBase: A Platform for Combina-
torial Computing, 1st edn. Addison-Wesley, Reading (1993)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


RETRACTED ARTIC
LE

Vietnam J Comput Sci

19. Geiser, P., Danon, L.: Community structure in jazz. Adv. Complex
Syst. 6(4), 563–573 (2003)

20. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The struc-
ture of the nervous systemof the nematodeCaenorhabditis elegans.
Philos. Trans. B 314(1165), 1–340 (1986)

21. Hummon, N.P., Doreian, P., Freeman, L.C.: Analyzing the struc-
ture of the centrality-productivity literature created between 1948
and 1979. Sci. Commun. 11(4), 459–480 (1990). doi:10.1177/
107554709001100405

22. Biedl, T., Franz, B.J.: Graph-drawing contest report. In: Proceed-
ings of the 9th International Symposium on Graph Drawing, pp.
513–521, September 2001 (2001)

23. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten,
E., Dawson, S.M.: The bottlenose dolphin community of doubt-
ful sound features a large proportion of long-lasting associations.
Behav. Ecol. Sociobiol. 54(3), 396–405 (2003)

24. Lee, J.-S.: Generating networks of illegal drug users using large
samples of partial ego-network data. In: Intelligence and Security
Informatics. Lecture Notes in Computer Science, vol. 3073, pp.
390–402 (2004)

25. de Nooy, W.: A literary playground: literary criticism and balance
theory. Poetics 26(5–6), 385–404 (1999)

26. Batagelj, V., Mrvar, A.: Pajek datasets (2006). http://vlado.fmf.
uni-lj.si/pub/networks/data/

27. Resnick, M.D., Bearman, P.S., Blum, R.W., Bauman, K.E., Harris,
K.M., Jones, J., Tabor, J., Beuhring, T., Sieving,R.E., Shew,M., Ire-
land, M., Bearinger, L.H., Udry, J.R.: Protecting adolescents from
harm. Findings from the national longitudinal study on adolescent
health. J. Am. Med. Assoc. 278(10), 823–832 (1997)

28. Krackhardt, D.: The ties that torture: Simmelian tie analysis in
organizations. Res. Sociol. Organ. 16, 183–210 (1999)

29. Moreno, J.L.: The Sociometry Reader, pp. 534–547. The Free
Press, Glencoe (1960)

30. Girvan, M., Newman, M.E.J.: Community structure in social and
biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–
7826 (2002)

31. Bernard, H.R., Killworth, P.D., Sailer, L.: Informant accuracy in
social network data IV: a comparison of clique-level structure in
behavioral and cognitive network data. Soc. Netw. 2(3), 191–218
(1980)

32. Gleiser, P.M.: How to become a superhero. J. Stat. Mech. Theory
Exp. 2007(9), P09020 (2007)

33. Isella, L., Stehle, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den
Broeck,W.:What’s in a crowd?Analysis of face-to-face behavioral
networks. J. Theor. Biol. 271(1), 166–180 (2011). doi:10.1016/j.
jtbi.2010.11.033

34. Zachary, W.W.: An information flow model for conflict and fission
in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

35. Rogers, E.M., Kincaid, D.L.: Communication Networks: Toward
a New Paradigm for Research. Free Press, New York (1980)

36. Takahata, Y.: Diachronic changes in the dominance relations of
adult female Japanese monkeys of the Arashiyama B group. In:
The Monkeys of Arashiyama, pp. 124–139. State University of
New York Press, Albany (1991)

37. Hayes, B.: Connecting the dots. Am. Sci. 94(5), 400–404 (2006)
38. Cross, R.L., Parker, A., Cross, R.: The Hidden Power of Social

Networks: Understanding HowWork Really Gets Done in Organi-
zations, 1st edn. Harvard Business Review Press, Brighton (2004)

39. McCarty, C., Freeman, L.: (2008). http://moreno.ss.uci.edu/data.
html

40. Gil-Mendieta, J., Schmidt, S.: The political network in Mexico.
Soc. Netw. 18(4), 355–381 (1996)

41. Gemmetto, V., Barrat, A., Cattuto, C.: Mitigation of infectious
disease at school: targeted class closure vs. school closure. BMC
Infect. Dis. 14(695), 1–10 (2014)

42. MacRae, D.: Direct factor analysis of sociometric data. Sociometry
23(4), 360–371 (1960)

43. Loomis, C.P., Morales, J.O., Clifford, R.A., Leonard, O.E.: Turri-
alba Social Systems and the Introduction of Change, pp. 45–78.
The Free Press, Glencoe (1953)

44. Scott, J.P.: The Anatomy of Scottish Capital: Scottish Companies
and Scottish Capital, 1900–1979, 1st edn. Croom Helm, London
(1980)

45. Grimmer, J.: ABayesian hierarchical topicmode for political texts:
measuring expressed agendas in senate press releases. Polit. Anal.
18(1), 1–35 (2010)

46. Michael, J.H.: Labor dispute reconciliation in a forest products
manufacturing facility. For. Prod. J. 47(11–12), 41–45 (1997)

47. Schwimmer, E.: Exchange in the Social Structure of the Orokaiva:
Traditional and Emergent Ideologies in the Northern District of
Papua. C Hurst and Co-Publishers Ltd., London (1973)

48. Pearson, M., Michell, L.: Smoke rings: social network analysis of
friendship groups, smoking and drug-taking. Drugs: Educ. Prev.
Policy 7(1), 21–37 (2000)

49. Nepusz, T., Petroczi, A., Negyessy, L., Bazso, F.: Fuzzy commu-
nities and the concept of bridgeness in complex networks. Phys.
Rev. E 77(1), 016107 (2008)

50. Meghanathan, N., Lawrence, R.: Centrality analysis of the United
States network graph. In: Proceedings of the 3rd International Con-
ference on Electrical, Electronics, Engineering Trends, Commu-
nication, Optimization and Sciences, pp. 23–28, Tadepalligudem,
India, June 1–2, 2016 (2016)

51. Freeman, L.C.,Webster, C.M.,Kirke,D.M.: Exploring social struc-
ture using dynamic three-dimensional color images. Soc. Netw.
20(2), 109–118 (1998)

52. Freeman, L.C., Freeman, S.C., Michaelson, A.G.: How humans
see social groups: a test of the Sailer–Gaulin models. J. Quant.
Anthropol. 1, 229–238 (1989)

53. Smith, D.A., White, D.R.: Structure and dynamics of the global
economy: network analysis of international trade 1965–1980. Soc.
Forces 70(4), 857–893 (1992)

54. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and
centrality in protein networks. Nature 411, 41–42 (2001)

55. Aprahamian, M., Higham, D.J., Higham, N.J.: Matching
exponential-based and resolvent-based centrality measures. J.
Complex Netw. 4(2), 157–176 (2016)

56. Sajitz-Hermstein, M., Nikoloski, Z.: Functional centrality as a pre-
dictor of shifts in metabolic flux states. BMC Res. Notes 9(317),
1–4 (2016)

57. Sajitz-Hermstein, M., Nikoloski, Z.: Restricted cooperative games
on metabolic networks reveal functionally important reactions. J.
Theor. Biol. 314, 192–203 (2012)

58. Wang, R., Huang, R., Qu, B.: Network-based analysis of software
change propagation. Sci. World J. 2014, 1–10 (2014) (Article ID
237243)

59. Koschutzki, D., Schreiber, F.: Centrality analysis methods for bio-
logical networks and their application to gene regulatory networks.
Gene Regul. Syst. Biol. 2008(2), 193–201 (2008)

60. Dawyer, T., Hong, S.-H., Koschutzki, D., Schreiber, F., Xu, K.:
Visual analytics of network centralities. In: Proceedings of the
Asia-Pacific Symposium on Information Visualization, vol. 60, pp.
189–197, Tokyo, Japan (2006)

61. Nomikos, G., Pantazopoulos, P., Karaliopoulos, M., Stavrakakis,
I.: Comparative assessment of centrality indices and implications
on the vulnerability of ISP networks. In: Proceedings of the 26th
International Teletraffic Congress, pp. 1–9, Karlskrona, Sweden,
September 2014 (2014)

123

http://dx.doi.org/10.1177/107554709001100405
http://dx.doi.org/10.1177/107554709001100405
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://dx.doi.org/10.1016/j.jtbi.2010.11.033
http://dx.doi.org/10.1016/j.jtbi.2010.11.033
http://moreno.ss.uci.edu/data.html
http://moreno.ss.uci.edu/data.html

	Concordance-based Kendall's correlation for computationally-light vs. computationally-heavy centrality metrics: lower bound for correlation
	Abstract
	1 Introduction
	2 Review of centrality metrics
	2.1 Degree centrality
	2.2 Eigenvector centrality
	2.3 Betweenness centrality
	2.4 Closeness centrality
	2.5 Localized clustering coefficient complement-based degree centrality

	3 Levels of correlation and the correlation coefficient measures
	3.1 Kendall's concordance-based correlation
	3.2 Spearman's rank-based correlation
	3.3 Pearson's product–moment correlation

	4 Real-world networks
	5 Correlation analysis
	5.1 On the sufficiency of a single correlation measure
	5.2 Kendall's correlation measure for lower bound of the correlation coefficient
	5.3 Analysis of the median values for the correlation coefficient
	5.4 LCC'DC–BWC correlation vs. DegC–BWC correlation
	5.5 Applications

	6 Related work and our contributions
	7 Conclusions
	References




