
Appendix 1 Derivation of constraints for force destribution with de-

signed (q, q̇, q̈)

Appendix 1.1 Derivation of Eqs. 13 and 14

Because the kinematic motion ((q, q̇, q̈)) is given at each time step, Eq. 12 can be represented as

follows:

τo − JLf = τ , (A1.1)

where τo =ML(q)q̈ + hL(q, q̇) + gL(q). Then, we can derive Eq. 14.

By substituting Eq. 14 for Eq. 11, we can get Eq. 13 as follows:

b = Aτ , (A1.2)

where A = JBJ
−1
L , b = Aτo +MB(q)q̈ + hB(q, q̇) + gB(q).

Appendix 1.2 Derivation of Eq. 20

The QP formulation is represented as follows for each Step i (i =A, B, C and D) of leg-grope-walk.

τ̂ =

[
τ

s

]
13×1

, b̂i = Âiτ̂ , Ĝiτ̂ ≤ d̂i, (A1.3)

where Âi and b̂i represent the equality constraints of Eq. 13 and leg-grope, Ĝi and d̂i represent the

inequality constraints. Here, we derive Âi, b̂i, Ĝi and d̂i at each Step i (i =A, B, C and D) of leg-

grope-walk.

Preparation

First, we define the rotation matrix iSRG which transforms the position vector from ΣG to ΣiS. If we

define Sf = [1SfT
1

2SfT
2

3SfT
3

4SfT
4 ]

T ∈ R12×1, the relation with f can be written as follows:

Sf = SCGf (A1.4)

SCG =


1SRG 0 0 0

0 2SRG 0 0

0 0 3SRG 0

0 0 0 4SRG


12×12

(A1.5)

where, iSfi represents the force vector fi on the contact coordinate frame ΣiS

Step A

At step A, the robot moves the COG while standing on four legs. Thus, the robot needs to fulfil the

constraints (Eqs. 15, 17, 18 and 19) for all four legs.

First, the constraints for foot contact (Eq. 15) for four legs can be written by using τ as follows:

Bfzτ ≤ Bfzτo ∈ R4×1, (A1.6)
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where, 
Bfz =


bfz 0 0 0

0 bfz 0 0

0 0 bfz 0

0 0 0 bfz

 SCGJ
−1
L ∈ R4×12

bfz = [0 0 1]

(A1.7)

Second, the constrants for slippage avoidance (Eqs. 17 and 18) for four legs can be written by

using τ as follows:

Bfrτ ≤ Bfrτo − s[1 1 . . . 1]T1×16 ∈ R16×1, (A1.8)

where, 

Bfr =


bfr 0 0 0

0 bfr 0 0

0 0 bfr 0

0 0 0 bfr

 SCGJ
−1
L ∈ R16×12

bfr =


1√
2

1√
2

µ√
2

− 1√
2

− 1√
2

µ√
2

− 1√
2

1√
2

µ√
2

1√
2

− 1√
2

µ√
2


(A1.9)

Finally, the constraints for leg-grope (Eq. 19) for four legs can be written by using τ as follows:

−Bfzτ ≤ Rref[1 1 1 1]
T −Bfzτo ∈ R4×1 (A1.10)

Thus, these inequality constraints (Eqs. A1.6 , A1.8 , A1.10 ) and s ≥ 0 can be written as follows

by using τ̂ :

ĜAτ̂ ≤ d̂A (A1.11)

where, 

ĜA =


B̂fz

B̂fr

−B̂fz

[01×12 | − 1]


25×13

B̂fz = [Bfz | 04×1]4×13

B̂fr = [Bfr | 116×1]16×13

d̂A =


Bfzτo
Bfrτo

Rref[1 1 1 1]
T −Bfzτo
0


25×1

(A1.12)
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Figure A1.1: Time response of normal reaction of grope leg i. Step A: Robot moves COG standing
on four legs. Step B: the robot reduces the force of the groping leg without any movement. Step C:
the robot swings the groping leg to the point of the leg-grope. Step D: the robot applies the force to
the ground gradually up to Rref .

The equality constraints can be derived from Eq. 13 as follows:

b̂A = ÂAτ̂ , (A1.13)

where, {
b̂A = b

ÂA = [A | 06×1]6×13
(A1.14)

Step B

At Step B, the robot reduces the force of the grope leg to 0 gradually standing on four legs. Thus, in

addition to the equality constraints of Step A, we constrain the time response of the force on grope

leg as shown in Step B of Fig. A1.1. The inequality constraint is the same as that of Step A.

We denote the time and the normal reaction of Legi when Step A finishes as ti2 and fiA, respectively.

In addition, we set the duration of Step B as TB = 1s. Then, the time response of the normal reaction

on grope leg is set as following linear function.

iSfiz = fB(t) ≡ fiA −
fiA
TB

(t− ti2). (A1.15)

Thus, we add the Eq.A1.15 to the equality constraints of Step A and can derive the following inequality

constraint and equality constraint.

ĜBτ̂ ≤ d̂B, (A1.16)

where, {
ĜB = ĜA

d̂B = d̂A

(A1.17)

and,

b̂B = ÂBτ̂ , (A1.18)
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where, 
b̂B =

[
b̂A

fB(t)− eTiz
SCGJ

−1
L τo

]
7×1

ÂB =

[
ÂA[

−eTiz
SCGJ

−1
L | 0

]
1×13

]
7×13

(A1.19)

where, eiz is defined as follows by using ez = [0 0 1]T :

eiz =



[
eTz 01×3 01×3 01×3

]T
(i = 1)[

01×3 e
T
z 01×3 01×3

]T
(i = 2)[

01×3 01×3 e
T
z 01×3

]T
(i = 3)[

01×3 01×3 01×3 e
T
z

]T
(i = 4)

∈ R12×1 (A1.20)

Step C

At Step C, the robot swings the grope leg to the point of the leg-grope. Thus, in addition to the

equality constraints of Step A, we set the force on the grope leg to be 0 as shown in Step C of Fig.

A1.1. The inequality constraint is the same as that of Step A. Derived inequality constraint and

equality constraint are shown as follows:

ĜCτ̂ ≤ d̂C, (A1.21)

where, {
ĜC = ĜA

d̂C = d̂A

(A1.22)

and,

b̂C = ÂCτ̂ , (A1.23)

where, 
b̂C =

[
b̂A

τoi

]
9×1

ÂC =

[
ÂA

B̂Ci

]
9×13

(A1.24)

where, B̂Ci is defined as follows:

B̂Ci =


[I3 03×3 03×3 03×3 03×1]

T (i = 1)

[03×3 I3 03×3 03×3 03×1]
T (i = 2)

[03×3 03×3 I3 03×3 03×1]
T (i = 3)

[03×3 03×3 03×3 I3 03×1]
T (i = 4)

∈ R3×13 (A1.25)

Step D

At Step D, the robot increases the force of the grope leg to Rref gradually while standing on four legs.

Thus, in addition to the equality constraints of Step A, we constrain the time response of the force on

grope leg as shown in Step D of Fig. A1.1. The inequality constraint is the same as that of Step A.
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We denote the time when Step C finishes as ti4. In addition, we set the duration of Step D as

TD = 3s. Then, the time response of the normal reaction on grope leg is set as following linear function.

iSfiz = fD(t) ≡
Rref

TD

(t− ti4). (A1.26)

Thus, we add the Eq.A1.26 to the equality constraints of Step A and can derive the following inequality

constraint and equality constraint.

ĜDτ̂ ≤ d̂D, (A1.27)

where, {
ĜD = ĜA

d̂D = d̂A

(A1.28)

and,

b̂D = ÂDτ̂ , (A1.29)

where, 
b̂D =

[
b̂A

fD(t)− eTiz
SCGJ

−1
L τo

]
7×1

ÂD =

[
ÂA[

−eTiz
SCGJ

−1
L | 0

]
1×13

]
7×13

(A1.30)
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Appendix 2 Explanation of how to design kinematic motion for the

simulation

In this appendix, we briefly explain how to design kinematic motion of the simulation. Because the

robot walks on the slopes in the simulation, we assumed that the robot keeps its body parallel to

the surface (Height of the body center from the suface is set as hb = 0.12 [m] in this simulation).

In addition, we also assumed that the body always faces toward the desired direction. Hence, the

attitude of the robot (roll, pitch, yaw angles) is determined based on the inclination of the slope and

the walking direction of the robot (θ and ψ). In addition, because a leg is not heavy, we assumed that

the COG of the robot locates on constant position on robot coordinate frame ΣR (We ignore the COG

change induced by relative leg movements).

Appendix 2.1 Designing contact points of groping legs and COG positions

As explained in the Results and Discussion section, the grope reaction is set as Rref =
1
2Mg cos θ

depending on slope inclination θ. The robot swings its four legs L2, L1, L3 and L4 in sequence

using the explained leg-grope walk method. Admissible regions for a groping leg and the COG are

represented on OG − xGyG in Fig. 6 for each one-leg cycle walking. We note that these admissible

regions are modified to compensate the assumption about COG based on the proposed method. We

omit the explanation of this modification because this is not our main target.

To determine the contact points of groping legs and the COG positions, we also need to consider

leg workspaces and conflict among the legs and bodies. In this simulation, we manually tuned the

contact points and COG positions by considering these matters, because our aim is not to propose a

path planing algorithm. Concretely, when the initial foot and COG positions are given as Table A2.1

and the robot walks to x axis direction, the contact points of legs and COG positions at groping are

set as Table A2.1 on OG − xGyG plane (Fig. 6). Because the geometrical information of environment,

the body attitude and the height of body are known, these positions on base coordinate frame can be

transformed from these values.

Appendix 2.2 Designing kinematic motions

We briefly explain how to design the kinematic motions for an one-leg cycle walking. First, we explain

how to design an one dimensional kinematic movement. Then we explain how to move legs at each

step (step A-D) based on the designed one dimensional kinematic movement.

1) One dimensional kinematic movement

We design a kinematic movement (x(t), ẋ(t), ẍ(t)) of a object which moves from x = 0 to x = L on

one dimensional coordinate x. We assume that the object stops at x = 0 at t = 0, then it moves, and

finally it stops at x = L. We set the maximum accerelation amax and maximum velocity vmax as design

parameters. In this case, we design the kinematic movement as Fig. A2.1 and following formulation:

1. πv2max/2amax < L (The case that there is a uniform motion)
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Table A2.1: The Parameters for the leg-grope walking.

One-leg cycle Position on OG − xGyG [m]
walking COG Leg 1 Leg 2 Leg 3 Leg 4

Initial state (0, 0) (0.105, 0.270) (-0.185, 0.270) (-0.145, -0.270) (0.145, -0.270)
Grope with L2 (0.008, -0.010) (0.105, 0.270) (0.013, 0.230) (-0.145, -0.270) (0.145, -0.270)
Grope with L1 (0.051, -0.030) (0.206, 0.190) (0.013, 0.230) (-0.145, -0.270) (0.145, -0.270)
Grope with L3 (0.109, -0.016) (0.206, 0.190) (0.013, 0.230) (0.063, -0.212) (0.145, -0.270)
Grope with L4 (0.109, 0.005) (0.206, 0.190) (0.013, 0.230) (0.063, -0.212) (0.172, -0.194)

We set the variables as follows (see Fig. A2.1)

to =
πvmax

2amax

(A2.1)

Tu =
L

vmax

− to (A2.2)

tend = Tu + 2to (A2.3)

We design the kinematic movement as follows depending on time t.

(a) 0 ≤ t ≤ to 
ẍ(t) = amax sin(tπ/to)

ẋ(t) = −1
2vmax cos(tπ/to) +

1
2vmax

x(t) = − v2max
4amax

sin(tπ/to) +
1
2vmaxt

(A2.4)

(b) to < t ≤ Tu + to 
ẍ(t) = 0

ẋ(t) = vmax

x(t) = −πv2max
4amax

+ vmax(t− to)

(A2.5)

(c) Tu + to < t ≤ tend
ẍ(t) = amax sin((t− Tu)π/to)

ẋ(t) = −1
2vmax cos((t− Tu)π/to) +

1
2vmax

x(t) = − v2max
4amax

sin((t− Tu)π/to) +
1
2(vmaxt+ L)− πv2max

4amax

(A2.6)

2. πv2max/2amax ≥ L (The case that there is no uniform motion)

We set the variable vd which is the maximum velocity in this kinematic movement.

vd =

√
2

π
amaxL (A2.7)

to =
πvd
2amax

(A2.8)

tend = 2to (A2.9)
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Figure A2.1: Example of one dimensional kinematic movement


ẍ(t) = amax sin(tπ/to)

ẋ(t) = −1
2vd cos(tπ/to) +

1
2vd

x(t) = −L
π sin(tπ/to) +

1
2vdt

(A2.10)

2) Kinematic motion of Step A

In Step A, the COG moves from the previous position to the position for groping with straight

line while standing on four legs. A kinematic motion of COG is designed using the one dimensional

kinematic movement (previous section), where we set the maximum accerelation amax = 0.15 [m/s2]

and maximum velocity vmax = 0.1 [m/s].

Because the COG position is constant on robot coordinate frame, we can transform the COG

motion to the joint kinematic motion ((q, q̇, q̈)) using inverse kinematics.

3) Kinematic motion of Step B

In Step B, the robot reduces the force on groping leg without movement. Thus, the robot does

not move for TB = 1 [s].

4) Kinematic motion of Step C

In Step C, the robot swings the groping leg to the groping position as Fig. A2.2. This step consists

of three motions. First, the robot lifts up the foot of the groping leg vertically to height hsw = 0.05

[m] using the one dimensional kinematic movement (amax = 0.15, vmax = 0.1). Second, the robot moves

the foot forward to the groping position while keeping the foot height constant using one dimensional

kinematic movement (amax = 0.15, vmax = 0.1). Finally, the robot puts down the foot vertically to the

ground using one dimensional kinematic movement (amax = 0.15, vmax = 0.1). We note that the robot

keeps its body center position and attitude constant while these motions.

Then, the joint kinematic motions ((q, q̇, q̈)) of these three motions are calculated using inverse

kinematics.

5) Kinematic motion of Step D
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Walking direction

Groping position

hsw

Figure A2.2: Example of the motion of Step C from side view. The robot lifts up the foot vertically
to height hsw, then moves foot forward prallel to the ground, finally places foot down to the groping
position.

In Step D, the robot increases the force on groping leg without movement. Thus, the robot does

not move for TD = 3 [s].

6) Summary

A kinematic motion of the robot is calculated by repeating these kinematic movement designs for

all groping legs.

9


