1 Supplementary File

Proof of Property 1: Obviously established.
Proof of Property 2:
(1) Because $A 1 \subseteq A 2 \subseteq C A$, we have $N T_{A 2}^{\lambda}\left(D_{k}\right) \subseteq$ $N T_{A 1}^{\lambda}\left(D_{k}\right)$, thus we can obtain $\operatorname{shar}_{A 1}\left(D_{k}\right) \leq \operatorname{shar}_{A 2}\left(D_{k}\right.$ from Definition 7.
(2) It is similar to (1).

Proof of Property 3: (1) Because $A 1 \subseteq A 2$, according to Property 2(1), it follows that $\operatorname{shar}_{A 1}\left(D_{k}\right) \leq$ $\operatorname{shar}_{A 2}\left(D_{k}\right)$. Then, we can obtain $\frac{\operatorname{shar}_{A 1}\left(D_{k}\right)}{\operatorname{dec}\left(D_{k}\right)} \leq \frac{\operatorname{shar}_{A 2}\left(D_{k}\right)}{\operatorname{dec}\left(D_{k}\right)}$. By Definition 8 we have $\theta_{A 1}^{(1)}\left(D_{k}\right) \leq \theta_{A 2}^{(1)}\left(D_{k}\right)$.
(2) It follow from Property 3(1) that $\theta_{A 1}^{(1)}\left(D_{k}\right) \leq$ $\theta_{A 2}^{(1)}\left(D_{k}\right)$ for any $A 1 \subseteq A 2$, thus it can be easily obtained that $1-\theta_{A 1}^{(1)}\left(D_{k}\right) \geq 1-\theta_{A 2}^{(1)}\left(D_{k}\right)$. From Definition 8, we have $\sigma_{A 1}^{(1)}\left(D_{k}\right) \geq \sigma_{A 2}^{(1)}\left(D_{k}\right)$.

Proof of Property 4: It follows From Property 3 that $\theta_{A 1}^{(1)}\left(D_{k}\right) \leq \theta_{A 2}^{(1)}\left(D_{k}\right)$ for any $A 1 \subseteq A 2$. Then, we can

Then, $\theta_{A}^{(1)}\left(D_{k}\right) \cdot \theta_{A}^{(2)}\left(D_{k}\right)=\frac{\operatorname{shar}_{A}\left(D_{k}\right)}{\operatorname{dec}\left(D_{k}\right)} \cdot \frac{\operatorname{dec}\left(D_{k}\right)}{\operatorname{blun_{A}(D_{k})}}=$ $\frac{\operatorname{shar}_{A}\left(D_{k}\right)}{\operatorname{blun}_{A}\left(D_{k}\right)}$. From Definition 16, we can obtain $\theta_{A}^{(3)}\left(D_{k}\right)=$ $\frac{\operatorname{shar}_{A}\left(D_{k}\right)}{\operatorname{blun}_{A}\left(D_{k}\right)}$,thus, $\theta_{A}^{(3)}\left(D_{k}\right)=\theta_{A}^{(1)}\left(D_{k}\right) \cdot \theta_{A}^{(2)}\left(D_{k}\right)$.
(3)

$$
\begin{aligned}
\sigma_{A}^{(3)}\left(D_{k}\right) & =1-\theta_{A}^{(3)}\left(D_{k}\right) \\
& =1-\theta_{A}^{(1)}\left(D_{k}\right) \cdot \theta_{A}^{(2)}\left(D_{k}\right) \\
& =1-\left[1-\sigma_{A}^{(1)}\left(D_{k}\right)\right] \cdot\left[1-\sigma_{A}^{(2)}\left(D_{k}\right)\right] \\
& =\sigma_{A}^{(1)}\left(D_{k}\right)+\sigma_{A}^{(2)}\left(D_{k}\right)-\sigma_{A}^{(1)}\left(D_{k}\right) \cdot \sigma_{A}^{(2)}\left(D_{k}\right.
\end{aligned}
$$

Proof of Property 9: Suppose any $A 1 \subseteq A 2$, according to Property 8(1), it follows that $\theta_{A 1}^{(3)}\left(D_{k}\right) \leq$ $\theta_{A 2}^{(3)}\left(D_{k}\right)$. Therefore, one has $0 \leq-\ln \theta_{A 2}^{(3)}\left(D_{k}\right) \leq-\ln \theta_{A 1}^{(3)}\left(D_{k}\right)$, $0 \leq \sigma_{A 2}^{(3)}\left(D_{k}\right) \leq \sigma_{A 1}^{(3)}\left(D_{k}\right) \leq 1$. From Definition 17, $I_{A 1}^{4}\left(D_{k}\right) \geq I_{A 2}^{4}\left(D_{k}\right)$ can be hold.

Proof of Property 10: have that $0 \leq-\ln \theta_{A 2}^{(1)}\left(D_{k}\right) \leq-\ln \theta_{A 1}^{(1)}\left(D_{k}\right), 0 \leq \sigma_{A 2}^{(1)}\left(D_{k}\right) \leq_{A}^{(4)}\left(D_{k}\right)=-\sigma_{A}^{(3)}\left(D_{k}\right) \ln \theta_{A}^{(3)}\left(D_{k}\right)$ $\sigma_{A 1}^{(1)}\left(D_{k}\right) \leq 1$. Thus, we can obtain $I_{A 1}^{1}\left(D_{k}\right) \geq I_{A 2}^{1}\left(D_{k}\right)$.

Proof of Property 5: (1) For $A 1 \subseteq A 2$, it follows from Property 2(2) that blun $_{A 1}\left(D_{k}\right) \geq$ blun $_{A 2}\left(D_{k}\right)$,
 Definition 11, we have $\theta_{A 1}^{(2)}\left(D_{k}\right) \leq \theta_{A 2}^{(2)}\left(D_{k}\right)$.
(2) From Property 5(1), it can be follow that $\theta_{A 1}^{(2)}\left(D_{k}\right) \leq$ $\theta_{A 2}^{(2)}\left(D_{k}\right)$ for any $A 1 \subseteq A 2$. So we can know that $1-$ $\theta_{A 1}^{(2)}\left(D_{k}\right) \geq 1-\theta_{A 2}^{(2)}\left(D_{k}\right)$. It can be easily proved that $\sigma_{A 1}^{(2)}\left(D_{k}\right) \geq \sigma_{A 2}^{(2)}\left(D_{k}\right)$.

Proof of Property 6: By Property 5(1), we can know that $\theta_{A 1}^{(2)}\left(D_{k}\right) \leq \theta_{A 2}^{(2)}\left(D_{k}\right)$. Therefore, we can have that $0 \leq-\ln \theta_{A 2}^{(2)}\left(D_{k}\right) \leq-\ln \theta_{A 1}^{(2)}\left(D_{k}\right), 0 \leq \sigma_{A 2}^{(2)}\left(D_{k}\right) \leq$ $\sigma_{A 1}^{(2)}\left(D_{k}\right) \leq 1$. Then, we can obtain $I_{A 1}^{2}\left(D_{k}\right) \geq I_{A 2}^{2}\left(D_{k}\right)$.

Proof of Property 7: From Properties 4 and 6, we can obtain that $I_{A 1}^{1}\left(D_{k}\right) \geq I_{A 2}^{1}\left(D_{k}\right)$ and $I_{A 1}^{2}\left(D_{k}\right) \geq$ $I_{A 2}^{2}\left(D_{k}\right)$ for any $A 1 \subseteq A 2$. Therefore, we can know that $I_{A 1}^{1}\left(D_{k}\right)+I_{A 1}^{2}\left(D_{k}\right) \geq I_{A 2}^{1}\left(D_{k}\right)+I_{A 2}^{2}\left(D_{k}\right)$. Hence, $I_{A 1}^{3}\left(D_{k}\right) \geq I_{A 2}^{3}\left(D_{k}\right)$.

Proof of Property 8: (1) For any $A 1 \subseteq A 2$, it follow $\operatorname{shar}_{A 1}\left(D_{k}\right) \leq \operatorname{shar}_{A 2}\left(D_{k}\right)$ and $\operatorname{blun}_{A 1}\left(D_{k}\right) \geq \operatorname{blun}_{A 2}\left(D_{k}\right)$. Therefore, it can be obtained $\frac{\operatorname{shar}_{A 1}\left(D_{k}\right)}{\operatorname{blun}_{A 1}\left(D_{k}\right)} \leq \frac{\operatorname{shar}_{A 2}\left(D_{k}\right)}{\operatorname{blun}_{A 2}\left(D_{k}\right)}$. According to Definition 16, we can know that $\theta_{A 1}^{(3)}\left(D_{k}\right) \leq$ $\theta_{A 2}^{(3)}\left(D_{k}\right)$. Then, $1-\theta_{A 1}^{(3)}\left(D_{k}\right) \geq 1-\theta_{A 2}^{(3)}\left(D_{k}\right)$. Hence, it can be obtained that $\sigma_{A 1}^{(3)}\left(D_{k}\right) \geq \sigma_{A 2}^{(3)}\left(D_{k}\right)$.
(2) From Definition 8 and Definition 11, we have
$\theta_{A}^{(1)}\left(D_{k}\right)=\frac{\operatorname{shar}_{A}\left(D_{k}\right)}{\operatorname{dec}\left(D_{k}\right)}$ and $\theta_{A}^{(2)}\left(D_{k}\right)=\frac{\operatorname{dec}\left(D_{k}\right)}{\operatorname{blun_{A}}\left(D_{k}\right)}$.
$=-\left[\sigma_{A}^{(1)}\left(D_{k}\right)+\sigma_{A}^{(2)}\left(D_{k}\right)-\sigma_{A}^{(1)}\left(D_{k}\right) \cdot \sigma_{A}^{(2)}\left(D_{k}\right)\right]$
$\cdot \ln \left[\theta_{A}^{(1)}\left(D_{k}\right)+\theta_{A}^{(2)}\left(D_{k}\right)\right]$
$=-\left[\sigma_{A}^{(1)}\left(D_{k}\right)+\sigma_{A}^{(2)}\left(D_{k}\right)-\sigma_{A}^{(1)}\left(D_{k}\right) \cdot \sigma_{A}^{(2)}\left(D_{k}\right)\right]$
$\cdot\left[\ln \theta_{A}^{(1)}\left(D_{k}\right)+\ln \theta_{A}^{(2)}\left(D_{k}\right)\right]$
$=-\sigma_{A}^{(1)}\left(D_{k}\right) \cdot \ln \theta_{A}^{(1)}\left(D_{k}\right)-\sigma_{A}^{(2)}\left(D_{k}\right) \cdot \ln \theta_{A}^{(2)}\left(D_{k}\right)$
$+\left[\sigma_{A}^{(1)}\left(D_{k}\right)-1\right] \cdot \sigma_{A}^{(2)}\left(D_{k}\right) \cdot \ln \theta_{A}^{(1)}\left(D_{k}\right)$
$+\left[\sigma_{A}^{(2)}\left(D_{k}\right)-1\right] \cdot \sigma_{A}^{(1)}\left(D_{k}\right) \cdot \ln \theta_{A}^{(2)}\left(D_{k}\right)$
$=I_{A}^{1}\left(D_{k}\right)+I_{A}^{2}\left(D_{k}\right)+\left[\sigma_{A}^{(1)}\left(D_{k}\right)-1\right] \cdot \sigma_{A}^{(2)}\left(D_{k}\right)$
$\cdot \ln \theta_{A}^{(1)}\left(D_{k}\right)+\left[\sigma_{A}^{(2)}\left(D_{k}\right)-1\right] \cdot \sigma_{A}^{(1)}\left(D_{k}\right) \cdot \ln \theta_{A}^{(2)}\left(D_{k}\right)$
From Definition 8, it follows that $0 \leq \theta_{A}^{(1)}\left(D_{k}\right), \sigma_{A}^{(1)}\left(D_{k}\right) \leq$ 1, then, we have $\ln \theta_{A}^{(1)}\left(D_{k}\right) \leq 0, \sigma_{A}^{(1)}\left(D_{k}\right)-1 \leq 0$. In the same way, $0 \leq \theta_{A}^{(2)}\left(D_{k}\right) \leq 1$ and $0 \leq \sigma_{A}^{(2)}\left(D_{k}\right) \leq 1$ can be obtained from Definition 11, then it follows that $\ln \theta_{A}^{(1)}\left(D_{k}\right) \leq 0, \sigma_{A}^{(2)}\left(D_{k}\right)-1 \leq 0$. Hence, it can be proved that:

$$
\left\{\begin{array}{l}
{\left[\sigma_{A}^{(1)}\left(D_{k}\right)-1\right] \cdot \sigma_{A}^{(2)}\left(D_{k}\right) \cdot \ln \theta_{A}^{(1)}\left(D_{k}\right) \geq 0} \tag{1}\\
{\left[\sigma_{A}^{(2)}\left(D_{k}\right)-1\right] \cdot \sigma_{A}^{(1)}\left(D_{k}\right) \cdot \ln \theta_{A}^{(2)}\left(D_{k}\right) \geq 0}
\end{array}\right.
$$

Therefore, $\varphi=(1)+(2) \geq 0$.

$$
\begin{aligned}
I_{A}^{4}\left(D_{k}\right) & =I_{A}^{1}\left(D_{k}\right)+I_{A}^{2}\left(D_{k}\right)+\varphi \\
& =I_{A}^{3}\left(D_{k}\right)+\varphi \\
& \geq I_{A}^{3}\left(D_{k}\right)
\end{aligned}
$$

Proof of Property 11: It is straightforward from Property 9.

