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1 Parameter Settings for TREE Problems

Six TREE problems exacted from real-world application
problems are tested as well. These TREE problems are data-
driven LSMOPs with complicated variable interactions. The
PSs of TREE problems are irregular compared with the nine
LSMOP problems, which reflect the smooth variation of
ratio errors over time. The number of decision variables
d is set to {3000,6000,15000} for TREE1∼TREE2 and
{6000,12000,30000} for TREE3∼TREE6. Due to a large
number of decision variables, the maximum number of FEs
is set to10×d to obtain acceptable solution sets within bear-
able computational cost. The maximum number of FEs is
relatively small compared to the settings in [1,2,3,4]. Nev-
ertheless, many real-world applications require the solution
of an LSMOP with limited computational resources and
acceptable time cost. The consumption of FEs for solving
LSMOPs close to the consumption for solving conventional
MOPs is practical even though the obtained solutions are not
converged to the PFs [5].

1.1 Performance on TREE Problems

To further investigate the performance of SLSEA in solving
real-world applications, Table 1 shows the statistics of HV
results achieved by the five compared large-scale MOEAs
on six TREE problems with up to 30000 decision variables.
Different from the results on LSMOP problems, LSMOF
has achieved the most best results, followed by SLSEA. In
contrast, MOEA/DVA and LMOCSO have failed to obtain
any feasible solution that Pareto dominates the nadir point.

Meanwhile, the final non-dominated solutions obtained
by the five compared algorithms on TREE1 to TREE2 with

15000 decision variables and TREE3 to TREE6 with 30000
decision variables in the run associated with the best HV
values are given in Fig. 1. According to the results in
Table 1 and this figure, it can be observed that SLSEA
has shown competitive performance in comparison with
LSMOF, where LSMOF is capable of obtaining solutions
around the top left corner in the objective space.

Based on the “No free lunch” theory, the number of it-
erations affects the performance of optimization algorithms.
Thus, no algorithm performs the best in all cases regard-
ing the number of iterations. The compared algorithms are
tested on five representative LSMOP test problems with
1000 decision variables to show the impact of computational
cost on the performance ranking. The convergence profiles
of the compared algorithms in terms of IGD values are given
in Fig. 2. Once a large number of FEs is given to the al-
gorithm, the ranks of the compared algorithms may differ
from those with a relatively small number of FEs. As can
be observed, SLSEA converges fast before 1×106 and stag-
nates around 4×106, while LMOCSO converges late and is
capable of maintaining good diversity for avoiding stagna-
tion even around 5×106. Thus, if a limited number of FEs
is given, SLSEA can be used, and LMOCSO is suggested to
be used if a large number of FEs is available.

To show the performance difference between the
proposed SLSEA and some state-of-the-art large-scale
MOEAs, two SOTA algorithms, i.e., FLEA [6] and
LMOEA-DS [7], are compared with SLSEA. Statistics
of the IGD results achieved by FLEA, LMOEA-DS, and
SLSEA on nine LSMOP problems with 1000, 2000, and
5000 decision variables are given in Fig. 3. As can be ob-
served, almost no statistical difference can be observed in
most cases, and the proposed SLSEA has shown competitive
performance in comparison with the two SOTA algorithms.
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Fig. 1 The non-dominated solutions achieved by the five compared algorithms on TREE1 to LSMOP6 with up to 30000 decision variables in the
run associated with the best IGD values.

Table 1 The Statistics of HV Results Achieved by LSMOF, MOEA/DVA, DGEA, LMOCSO and SLSEA on 18 Test Instances. The Best Result
in Each Row is Highlighted.

Problem d LSMOF MOEA/DVA DGEA LMOCSO SLSEA

TREE1
1000 4.53e-3(6.39e-4)≈ 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 4.38e-3(4.62e-5)
2000 1.26e-3(9.38e-5)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 1.36e-3(8.98e-5)
5000 3.35e-2(5.02e-4)+ 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 3.25e-2(1.28e-4)

TREE2
1000 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
2000 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
5000 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

TREE3
1000 1.11e-2(2.63e-5)≈ 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 1.11e-2(1.22e-5)
2000 9.96e-3(4.50e-5)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 9.98e-3(9.06e-6)
5000 5.52e-2(9.86e-3)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 6.00e-2(3.00e-6)

TREE4
1000 3.91e-1(1.58e-4)+ 0.00e+0(0.00e+0)− 5.74e-2(1.14e-1)− 0.00e+0(0.00e+0)− 3.90e-1(2.30e-4)
2000 4.27e-1(5.38e-5)+ 0.00e+0(0.00e+0)− 2.03e-2(9.07e-2)− 0.00e+0(0.00e+0)− 4.27e-1(7.31e-5)
5000 5.54e-1(6.67e-5)+ 0.00e+0(0.00e+0)− 7.79e-2(1.91e-1)− 0.00e+0(0.00e+0)− 5.54e-1(2.28e-4)

TREE5
1000 2.87e-1(1.73e-4)+ 0.00e+0(0.00e+0)− 3.30e-2(8.67e-2)− 0.00e+0(0.00e+0)− 2.86e-1(3.35e-4)
2000 2.66e-1(5.10e-6)+ 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 2.66e-1(1.46e-4)
5000 2.48e-1(4.46e-5)+ 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 0.00e+0(0.00e+0)− 2.48e-1(1.29e-4)

TREE6
1000 1.10e-1(5.12e-3)+ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
2000 1.10e-1(5.46e-3)+ 0.00e+0(0.00e+0)≈ 2.63e-3(1.18e-2)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
5000 1.09e-1(6.58e-3)+ 0.00e+0(0.00e+0)≈ 1.35e-3(6.02e-3)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

+/−/≈ 10/3/5 0/12/6 0/12/6 0/12/6

’+’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by SLSEA, respec-
tively.
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Fig. 2 Convergence profiles of eight compared large-scale MOEAs on five representative LSMOP problems with 1000 decision variables in terms
of IGD values. The maximum number of FEs is set to 5×106. The subplots show the IGD values in the logarithmic scale.

Fig. 3 Statistics of the IGD results achieved by FLEA, LMOEA-DS, and SLSEA on nine LSMOP problems with 1000, 2000, and 5000 decision
variables.


