## APPENDIX

This section briefly explains the sentiment propagation mechanism in the IP learning for the CSNN.

## A. Effect of IP learning for WOSL, SSL, WLCSL

Notation. Let us define $R(\cdot)$ and $P N(\cdot)$ as
$R\left(w_{t}^{\mathbf{Q}}\right):=\left\{\begin{array}{cc}-1 & \left(\text { sentiment of } w_{t}^{\mathbf{Q}} \text { is shifted) }\right. \\ 1 & (\text { otherwise })\end{array}\right.$,
$P N\left(w_{t}^{\mathbf{Q}}, \mathbf{Q}\right):=\left\{\begin{array}{cc}1 & \left(\operatorname{sign}\left(d^{\mathbf{Q}}-0.5\right) \neq\left(R\left(w_{t}^{\mathbf{Q}}\right)\right)\right. \\ -1 & \left(d^{\mathbf{Q}}=\left(\operatorname{sign}\left(d^{\mathbf{Q}}-0.5\right)=\left(R\left(w_{t}^{\mathbf{Q}}\right)\right)\right.\right.\end{array}\right.$
where $P N\left(w_{t}^{\mathbf{Q}}, \mathbf{Q}\right)=1$ denotes the case where the sentiment of term $w_{t}^{\mathbf{Q}}$ is shifted in a negative review $\mathbf{Q}$ or the sentiment of term $w_{t}^{\mathbf{Q}}$ is not shifted in a positive review, and $P N\left(w_{t}^{\mathbf{Q}}, \mathbf{Q}\right)=-1$ denotes the opposite case.

Moreover, we define Condition A. 1 as
Condition A.1: if word $w_{i}$ in $S^{d}$ then,

$$
w_{i}^{p} \begin{cases}>0 & \left(O S\left(w_{i}^{p}\right)>0\right)  \tag{10}\\ <0 & \left(O S\left(w_{i}^{p}\right)<0\right)\end{cases}
$$

is satisfied, where

$$
O S\left(w_{j}^{p}\right):=E\left[P N\left(w_{t}^{\mathbf{Q}}, \mathbf{Q}\right) \mid w_{t}^{\mathbf{Q}}=w_{j}^{p}, \mathbf{Q} \in \Omega^{t r}\right]
$$

and $\Omega^{t r}$ is a set of reviews in a training dataset. Here, the following Proposition A. 2 is satisfied:

Proposition A.2: If Condition A. 1 is satisfied, and $\min _{w_{i} \in S^{d}}\left\|\boldsymbol{w}_{i}^{e m}-\boldsymbol{w}_{j}^{e m}\right\|_{2}<\delta$ where $\delta(>0)$ is sufficiently small, then, the following equations are satisfied for word $w_{j}$ after sufficient iterations through IP learning:

$$
\begin{gather*}
E\left[w_{j}^{p}\right] \begin{cases}>0 & \left(O S\left(w_{j}^{p}\right)>0\right) \\
<0 & \left(O S\left(w_{j}^{p}\right)<0\right)\end{cases}  \tag{11}\\
E\left[s_{t}^{\mathbf{Q}}\right] \begin{cases}>0 & \left(R\left(w_{t}^{\mathbf{Q}}\right)>0\right) \\
<0 & \left(R\left(w_{t}^{\mathbf{Q}}\right)<0\right)\end{cases} \tag{12}
\end{gather*}
$$

Proposition A. 2 denotes that if the meaning of a term $w_{j}$ is sufficiently similar to any of words in $S^{d}$ and $S^{d}$ satisfies Condition A.1, then, its word-level original sentiments and sentiment shifts are expected to be accurately assigned by the CSNN. The quality of the word sentiment dictionary is important for the success of propagation, where $\left|S^{d}\right|$ should not be too small and each word in $S^{d}$ must satisfy Condition A.1. This proposition can be explained using the following propositions A.3-A.6.

Proposition A.3: For every $c_{t}^{\mathbf{Q}} \in\left\{\left\{c_{t}^{\mathbf{Q}}\right\}_{t=1}^{n} \mid \mathbf{Q} \in \Omega^{t r}\right\}$,

$$
\frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}}\left\{\begin{array}{cc}
<0 & \left(d^{\mathbf{Q}}=1\right)  \tag{13}\\
>0 & \left(d^{\mathbf{Q}}=0\right)
\end{array}\right.
$$

where

$$
c_{t}^{\mathbf{Q}}:=p_{t}^{\mathbf{Q}} \cdot s_{t}^{\mathbf{Q}}
$$

Proposition A.4: If $d^{\mathbf{Q}}=1$ and $w_{i}^{p}>0$, or $d^{\mathbf{Q}}=0$ and $w_{i}^{p}<0$ word $w_{i}=w_{t}^{\mathbf{Q}}$, then, $\frac{\partial L^{\mathbf{Q}}}{\partial s_{t}^{\mathbf{Q}}}<0$. In the opposite case, $\frac{\partial L^{\boldsymbol{Q}}}{\partial s_{t}^{Q}}>0$.

Proposition A.5: Let $D_{i}^{\mathrm{Q}}$ be a set of passages that include word $w_{i}$, and $t^{\prime}(\mathbf{Q}, i)$ be $\left\{t^{\prime} \mid w_{t^{\prime}}^{\mathbf{Q}}=w_{i}, w_{t^{\prime}}^{\mathbf{Q}} \in \mathbf{Q}\right\}$. If

$$
\begin{gather*}
\left\|\boldsymbol{w}_{i}^{e m}-\boldsymbol{w}_{j}^{e m}\right\|_{2}<\delta  \tag{14}\\
\min _{t^{\prime} \in t^{\prime}(\mathbf{Q}, i), \mathbf{Q} \in D_{i}^{\mathbf{Q}}}\left\|\overrightarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}-\overrightarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}}\right\|_{2}<T^{\prime} \delta \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
\min _{t^{\prime} \in t^{\prime}(\mathbf{Q}, i), \mathbf{Q} \in D_{i}^{\mathbf{Q}}}\left\|\overleftarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}-\overleftarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}}\right\|_{2}<T^{\prime \prime} \delta \tag{16}
\end{equation*}
$$

where $\delta>0$ is established, then,

$$
\begin{equation*}
\min _{t^{\prime} \in t^{\prime}(\mathbf{Q}, i), \mathbf{Q} \in D_{i}^{\mathbf{Q}}}\left\|s_{t}^{\mathbf{Q}}-s_{t^{\prime}}^{\mathbf{Q}}\right\|_{2}<T^{\prime \prime \prime} \delta \tag{17}
\end{equation*}
$$

where $T^{\prime}>0, T^{\prime \prime}>0, T^{\prime \prime \prime}>0$, and $w_{j}=w_{t}^{\mathbf{Q}}$.
Proposition A.6: If $w_{j}$ satisfies

$$
\left\{\begin{array}{cc}
s_{t}^{\mathbf{Q}}<0 & \left(R\left(w_{t}^{\mathbf{Q}}\right)=-1, w_{t}=w_{j}\right)  \tag{18}\\
s_{t}^{\mathbf{Q}}>0 & \left(R\left(w_{t}^{\mathbf{Q}}\right)=1, w_{t}=w_{j}\right)
\end{array}\right.
$$

, then, $w_{j}$ satisfies

$$
\left\{\begin{array}{c}
\frac{\partial L^{\mathbf{Q}}}{\partial w_{j}^{p}}<0\left(P N\left(w_{t}^{\mathbf{Q}}, \mathbf{Q}\right)=1 \wedge w_{t}^{\mathbf{Q}}=w_{j}\right)  \tag{19}\\
\frac{\partial L^{\mathbf{Q}}}{\partial w_{j}^{p}}>0\left(P N\left(w_{t}^{\mathbf{Q}}, \mathbf{Q}\right)=-1 \wedge w_{t}^{\mathbf{Q}}=w_{j}\right)
\end{array}\right.
$$

Proposition A.7: Let the values of $\boldsymbol{W}^{O}$ before and after performing Update in Algorithm 1 in the tth iteration be $\boldsymbol{W}_{t}^{O, a}$ and $\boldsymbol{W}_{t}^{O, b}$, respectively. Then,

$$
\begin{equation*}
\frac{\left\|\boldsymbol{W}_{t}^{O, a}-\boldsymbol{W}_{t}^{O, b}\right\|_{2}}{\left\|\boldsymbol{W}_{t}^{O, b}\right\|_{2}} \underset{t \rightarrow \infty}{ } 0 \tag{20}
\end{equation*}
$$

## B. Effect of IP learning for GIL

In IP learning, the values of GIL are assigned in the form that terms with strong sentiment are attentioned:

$$
\begin{equation*}
\frac{\partial L^{\mathbf{Q}}}{\partial \alpha_{t}^{\mathbf{Q}}}=\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \Delta_{o}^{\mathbf{Q}} \cdot s_{t}^{\mathbf{Q}} \cdot p_{t}^{\mathbf{Q}} \tag{21}
\end{equation*}
$$

where

$$
\begin{array}{r}
\boldsymbol{M}_{t}^{\mathbf{Q}}:=\boldsymbol{W}^{o} \boldsymbol{b}_{t}^{\mathbf{Q}} \operatorname{diag}\left(1-\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)^{2}\right), \\
\Delta_{o}^{\mathbf{Q}}:= \begin{cases}\left(\boldsymbol{a}^{\mathbf{Q}}-(1,0)\right) & \left(d^{\mathbf{Q}}=0\right) \\
\left(\boldsymbol{a}^{\mathbf{Q}}-(0,1)\right) & \left(d^{\mathbf{Q}}=1\right)\end{cases} \\
\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \Delta_{o}^{\mathbf{Q}} \begin{cases}>0 & \left(d^{\mathbf{Q}}=0\right) \\
<0 & \left(d^{\mathbf{Q}}=1\right)\end{cases} \tag{24}
\end{array} .
$$

This attention manner is known to be natural for humans [6].
Proposition A.8: When Init is used, then, if $\min _{w_{j} \in S^{d}} \mid e_{t}^{\mathbf{Q}}-$ $\boldsymbol{w}_{j}^{e m} \mid<\epsilon$ where $\epsilon>0$ is sufficiently small, then,

$$
\operatorname{sign}\left(\frac{\partial L^{\mathbf{Q}^{\prime}}}{\partial p_{t^{\prime}}^{\mathbf{Q}^{\prime}}}\right)=\left\{\begin{array}{ll}
R\left(w_{t^{\prime}}^{\mathbf{Q}^{\prime}\left(w_{t^{\prime}}^{\mathbf{Q}^{\prime}} w_{j}\right)}\right) & \left(d^{\mathbf{Q}}=0\right) \\
-R\left(w_{t^{\prime}}^{\mathbf{Q}^{\prime}\left(w_{t^{\prime}}^{\mathbf{Q}^{\prime}}, w_{j}\right)}\right) & \left(d^{\mathbf{Q}}=1\right)
\end{array} .\right.
$$

where

$$
I(a, b):=\left\{\begin{array}{ll}
1 & (a=b) \\
0 & (a \neq b),
\end{array}, \Psi(a, b):= \begin{cases}1 & (a=b) \\
-1 & (a \neq b)\end{cases}\right.
$$

is established.
Proposition A. 8 explains the effect of Init for the word-level original sentiment assignment property of CSNN.

## C. Proofs of Propositions A.3-A. 7

We introduce the proofs of Propositions A.3-A. 7

1) Proof of Proposition A.3:

$$
\begin{gathered}
=\frac{\frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}}}{\partial \boldsymbol{a}^{\mathbf{Q}}} \frac{\partial \boldsymbol{a}^{\mathbf{Q}}}{\partial\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)} \frac{\partial\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)}{\partial \sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}} \frac{\partial \sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}}{\partial g_{t}^{\mathbf{Q}}} \\
=\boldsymbol{\Delta}_{o}^{\mathbf{Q}} \boldsymbol{W}^{o} \boldsymbol{b}_{t}^{\mathbf{Q}} \operatorname{diag}\left(1-\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)^{2}\right) \alpha_{t}^{\mathbf{Q}} \\
=\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \boldsymbol{\Delta}_{o}^{\mathbf{Q}} \alpha_{t}^{\mathbf{Q}}
\end{gathered}
$$

where

$$
\begin{gathered}
\boldsymbol{M}_{t}^{\mathbf{Q}}=\boldsymbol{W}^{o} \operatorname{diag}\left(1-\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)^{2}\right) \boldsymbol{b}_{t}^{\mathbf{Q}} \\
\boldsymbol{\Delta}_{o}^{\mathbf{Q}}= \begin{cases}\boldsymbol{a}^{\mathbf{Q}}-(1,0)^{T} & \left(d^{\mathbf{Q}}=0\right) \\
\boldsymbol{a}^{\mathbf{Q}}-(0,1)^{T} & \left(d^{\mathbf{Q}}=1\right)\end{cases}
\end{gathered}
$$

Here, $\frac{\partial L}{\partial c^{\mathbf{Q}}}$ is positive and negative when $d^{\mathbf{Q}}=0$ and $d^{\mathbf{Q}}=1$, respectively, $(t=1,2, \cdots, n$,$) because m_{t}^{\mathbf{Q}}, 0 \leq 0$ and $m_{t}^{\mathbf{Q}}, 1 \geq 0$ by Update. Therefore, the proposition is established.
2) Proof of Proposition A.4:

$$
\begin{align*}
\frac{\partial L^{\mathbf{Q}}}{\partial s_{t}^{\mathbf{Q}}}=\frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}} \frac{\partial c_{t}^{\mathbf{Q}}}{\partial s_{t}^{\mathbf{Q}}}=\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \boldsymbol{\Delta}_{o}^{\mathbf{Q}} \alpha_{t}^{\mathbf{Q}} p_{t}^{\mathbf{Q}} \\
\frac{\partial L^{\mathbf{Q}}}{\partial s_{t}^{\mathbf{Q}}}=\frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}} \frac{\partial c_{t}^{\mathbf{Q}}}{\partial s_{t}^{\mathbf{Q}}}=\frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}} p_{t}^{\mathbf{Q}} \tag{25}
\end{align*}
$$

where word $w_{i}=w_{t}^{\mathbf{Q}}$, and the $p_{t, i}$ is the $i$ th element of $\boldsymbol{p}_{t}$. Therefore, from Proposition A. 3 and the above Eq (25), this proposition is established.
3) Proof of Proposition A.5: Proposition A. 5 can be explained as follows. Here, Eq (15) can be explained from the property of the skip-gram method: if $\left\|\boldsymbol{w}_{i}^{e m}-\boldsymbol{w}_{j}^{e m}\right\|<\delta$ and the value of $\delta$ is sufficiently small, then, the appearance patterns of the word $w_{i}$ and $w_{j}$ are similar.

## Proof.

For every $t^{\prime} \in t^{\prime}(\mathbf{Q}, i), \mathbf{Q} \in D_{i}^{Q}$,

$$
\begin{gathered}
\left\|\boldsymbol{s}_{t}^{\mathbf{Q}}-\boldsymbol{s}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right\|=\| \tanh \left(\boldsymbol{v}^{l e f t}{ }^{T} \overleftarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}\right) \cdot \tanh \left(\boldsymbol{v}^{r^{\prime g h t} t^{T}} \overrightarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}\right)- \\
\tanh \left(\boldsymbol{v}^{l e f t} T \overleftarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right) \cdot \tanh \left(\boldsymbol{v}^{r i g h t} T \overrightarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right) \| \\
=\| \tanh \left(\boldsymbol{v}^{l e f t^{T}}\left(\overleftarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}-\overleftarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right) \cdot \tanh \left(\boldsymbol{v}^{r i g h t} \overleftarrow{h}_{t}^{T}\right)\right. \\
+\tanh \left(\boldsymbol{v}^{l e f t} t^{T}\left(\overleftarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right)\right) \cdot \tanh \left(\boldsymbol{v}^{r i g h t} T^{T}\left(\overrightarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}-\overrightarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right)\right) \| \\
<\left\|\tanh \left(\boldsymbol{v}^{l e f t}\left(\overleftarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}-\overleftarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right)\right) \cdot \tanh \left(\boldsymbol{v}^{\text {right }^{T}} \overrightarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}\right)\right\|
\end{gathered}
$$

$$
\begin{gathered}
+\left\|\tanh \left(\boldsymbol{v}^{l e f t^{T}}\left(\overleftarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right)\right) \cdot \tanh \left(\boldsymbol{v}^{r i g h t}{ }^{T}\left(\overrightarrow{\boldsymbol{h}}_{t}^{\mathbf{Q}}-\overrightarrow{\boldsymbol{h}}_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right)\right)\right\| \\
<\delta\left(\left\|\boldsymbol{v}^{r i g h t}\right\|+\left\|\boldsymbol{v}^{l e f t}\right\|\right)
\end{gathered}
$$

Thus,

$$
\min _{t^{\prime} \in t^{\prime}(Q), Q \in D_{i}^{\mathbf{Q}}}\left\|r_{t}^{\mathbf{I}}-r_{t^{\prime}}^{\mathbf{Q}}\right\|<T^{\prime \prime \prime} \delta
$$

where $T^{\prime \prime \prime}=\left\|\boldsymbol{v}^{\text {right }}\right\|+\left\|\boldsymbol{v}^{l e f t}\right\|$ is established. Therefore this proposition is established.,
4) Proof of Proposition A.6: In the update process using $\mathbf{Q} \in D^{t r}$,
$\frac{\partial L^{\mathbf{Q}}}{\partial w_{j}^{p}}=\sum_{t=1}^{n} \frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}} \frac{\partial c_{t}^{\mathbf{Q}}}{\partial p_{t}^{\mathbf{Q}}} I\left(w_{j}, p_{t}^{\mathbf{Q}}\right)=\sum_{t=1}^{n} \frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}} s_{t}^{\mathbf{Q}} I\left(w_{j}, p_{t}^{\mathbf{Q}}\right)$
is established. Here, when $w_{j}=p_{t}^{\mathbf{Q}}$, all the values of $\left\{s_{t}^{\mathbf{Q}}\right\}$ satisfy Eq (18). Thus, this proposition is established.
5) Proof of Proposition A.7: Proof After the sufficient time of update iterations, for every $j$,

$$
\begin{gathered}
\boldsymbol{u}^{3, \mathbf{Q}}:=\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right) \\
E\left[\frac{\partial L^{\mathbf{Q}}}{\partial w_{1, j}^{O}}\right]=E\left[\sum_{\mathbf{Q} \in D^{\text {mini }}} \Delta_{o, 1}^{\mathbf{Q}}\left(u_{j}^{3, \mathbf{Q}}\right)^{T}\right]>0 \\
E\left[\frac{\partial L^{\mathbf{Q}}}{\partial w_{2, j}^{O}}\right]=E\left[\sum_{\mathbf{Q} \in D^{\text {mini }}} \Delta_{o, 2}^{\mathbf{Q}}\left(u_{j}^{3, \mathbf{Q}}\right)^{T}\right]<0
\end{gathered}
$$

where $w_{i, j}^{O}$ is the $(i, j)$ element of $\boldsymbol{W}^{O}$ and $D^{\text {mini }}$ is the mini-batch dataset in the learning. Therefore, considering that each value of $\boldsymbol{u}^{3, \mathbf{Q}}$ is negative and positive when $d^{\mathbf{Q}}=0$ and $d^{\mathbf{Q}}=1$, respectively, is established because Proposition A. 3 is established. Therefore, Proposition A. 7 is established.
6) Proof of Proposition A.8: First,

$$
\begin{aligned}
\frac{\partial L^{\mathbf{Q}}}{\partial p_{t}^{\mathbf{Q}}} & =\frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}} \frac{\partial c_{t}^{\mathbf{Q}}}{\partial p_{t}^{\mathbf{Q}}}=\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \boldsymbol{\Delta}_{o}^{\mathbf{Q}} \alpha_{t}^{\mathbf{Q}} s_{t}^{\mathbf{Q}} \\
\frac{\partial L^{\mathbf{Q}}}{\partial s_{t}^{\mathbf{Q}}} & =\frac{\partial L^{\mathbf{Q}}}{\partial c_{t}^{\mathbf{Q}}} \frac{\partial c_{t}^{\mathbf{Q}}}{\partial s_{t}^{\mathbf{Q}}}=\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \boldsymbol{\Delta}_{o}^{\mathbf{Q}} \alpha_{t}^{\mathbf{Q}} p_{t}^{\mathbf{Q}}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{\partial L^{\mathbf{Q}}}{\partial w_{1, j}^{O}}=\Delta_{o, 1}^{\mathbf{Q}}\left(u_{j}^{3, \mathbf{Q}}\right)^{T}, \frac{\partial L^{\mathbf{Q}}}{\partial w_{2, j}^{O}}=\Delta_{o, 2}^{\mathbf{Q}}\left(u_{j}^{3, \mathbf{Q}}\right)^{T} \tag{27}
\end{equation*}
$$

where

$$
\Delta_{o, 1}^{\mathbf{Q}}=-\Delta_{o, 2}^{\mathbf{Q}}
$$

are established. Therefore,

$$
\begin{equation*}
-w_{1, j}^{O}=w_{2, j}^{O}\left(=\omega_{j}\right) \tag{28}
\end{equation*}
$$

is established. Moreover,

$$
\begin{align*}
\frac{\partial L^{\mathbf{Q}}}{\partial \boldsymbol{u}^{3, \mathbf{Q}}}= & \frac{\partial L^{\mathbf{Q}}}{\partial \boldsymbol{a}} \frac{\partial \boldsymbol{a}}{\partial w_{j}^{o}}=\Delta_{o}^{\mathbf{Q}} \boldsymbol{W}^{o}=\boldsymbol{\Delta}_{o}^{\mathbf{Q}}[-\boldsymbol{\omega} ; \boldsymbol{\omega}] \\
& = \begin{cases}2\left|\Delta_{o, 1}^{\mathbf{Q}}\right| \boldsymbol{\omega} & \left(d^{\mathbf{Q}}=0\right) \\
-2 \Delta_{o, 1}^{\mathbf{Q}} \mid \boldsymbol{\omega} & \left(d^{\mathbf{Q}}=1\right)\end{cases} \tag{29}
\end{align*}
$$

is established. Therefore, after the sufficient time of iterations,

$$
E\left[\boldsymbol{u}^{3, \mathbf{Q}}\right]= \begin{cases}-k \boldsymbol{\omega} & \left(d^{\mathbf{Q}}=0\right) \\ k \boldsymbol{\omega} & \left(d^{\mathbf{Q}}=1\right)\end{cases}
$$

where $k>0$ is expected to be established.
Therefore,

$$
\begin{gathered}
\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \boldsymbol{\Delta}_{o}^{\mathbf{Q}}=\boldsymbol{b}_{t}^{\mathbf{Q}^{T}} \operatorname{diag}\left(1-\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)^{2}\right) \boldsymbol{W}^{o T} \boldsymbol{\Delta}_{o}^{\mathbf{Q}} \\
=\boldsymbol{b}_{t}^{\mathbf{Q}^{T}} \operatorname{diag}\left(\mathbf{1}-\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)^{2}\right) \boldsymbol{W}^{o T} \boldsymbol{\Delta}_{o}^{\mathbf{Q}} \\
= \begin{cases}2\left|\Delta_{o, 2}^{\mathbf{Q}}\right| \boldsymbol{b}_{t}^{\mathbf{Q}^{T}} \operatorname{diag}\left(\mathbf{1}-\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)^{2}\right) \boldsymbol{\omega} & \left(d^{\mathbf{Q}}=0\right) \\
-2\left|\Delta_{o, 2}^{\mathbf{Q}}\right| \boldsymbol{b}_{t}^{\mathbf{Q}^{T}} \operatorname{diag}\left(\mathbf{1}-\left(\tanh \left(\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}\right)\right)^{2}\right) \boldsymbol{\omega} & \left(d^{\mathbf{Q}}=1\right)\end{cases}
\end{gathered}
$$

Moreover, after the sufficient times of iterations,

$$
\begin{equation*}
\operatorname{sign}\left(\omega_{1}\right)=\operatorname{sign}\left(\omega_{2}\right)=\cdots=\operatorname{sign}\left(\omega_{k}\right) \tag{30}
\end{equation*}
$$

is established because Eq (27) and

$$
\boldsymbol{u}^{3, \mathbf{Q}}=\sum_{t=1}^{n} \boldsymbol{v}_{t}^{\mathbf{Q}}=\sum_{t=1}^{n} g_{t}^{\mathbf{Q}} \boldsymbol{b}_{t}^{\mathbf{Q}}
$$

where

$$
\operatorname{sign}\left(v_{t, 1}^{\mathbf{Q}}\right)=\operatorname{sign}\left(v_{t, 2}^{\mathbf{Q}}\right)=\cdots=\operatorname{sign}\left(v_{t, k}^{\mathbf{Q}}\right)
$$

are satisfied, and in sufficient times of cases,

$$
\begin{equation*}
\boldsymbol{u}^{3, \mathbf{Q}} \simeq g_{\hat{t}}^{\mathbf{Q}} \boldsymbol{b}_{\hat{t}}^{\mathbf{Q}} \tag{31}
\end{equation*}
$$

where

$$
\hat{t}=\operatorname{argmax}_{t} g_{t}^{\mathbf{Q}}
$$

Eq (31) occurs because

$$
E\left[p_{t}^{\mathbf{Q}} \mid w_{t}^{\mathbf{Q}} \in S^{d}\right] \gg E\left[p_{t}^{\mathbf{Q}} \mid w_{t}^{\mathbf{Q}} \notin S^{d}\right]
$$

$E\left[\alpha_{t}^{\mathbf{Q}}\left|\min _{w_{j} \in S^{d}}\right| w_{t}^{\mathbf{Q}}-\boldsymbol{w}_{j}^{e m} \mid<\epsilon\right] \gg E\left[\alpha_{t}^{\mathbf{Q}}\left|\min _{w_{j} \in S^{d}}\right| w_{t}^{\mathbf{Q}}-\boldsymbol{w}_{j}^{e m} \mid \geq \epsilon\right]$,
where $\epsilon$ is sufficiently small, and $\left|S^{d}\right|$ is sufficiently small.
Therefore,

$$
\operatorname{sign}\left(\boldsymbol{M}_{t}^{\mathbf{Q}^{T}} \boldsymbol{\Delta}_{o}^{\mathbf{Q}}\right)= \begin{cases}-\chi & \left(d^{\mathbf{Q}}=0\right) \\ \chi & \left(d^{\mathbf{Q}}=1\right)\end{cases}
$$

Thus,

$$
\begin{aligned}
& s_{t}^{\mathbf{Q}} \simeq \epsilon-\sum_{\mathbf{Q}^{\prime} \in \Omega^{t r}} \sum_{t^{\prime}=1}^{\left|\mathbf{Q}^{\prime}\right|} \boldsymbol{M}_{t^{\prime}}^{\mathbf{Q}^{\prime} T} \Delta_{o}^{\mathbf{Q}^{\prime}} \alpha_{t^{\prime}}^{\mathbf{Q}^{\prime}} p_{t^{\prime}}^{\mathbf{Q}^{\prime}} I\left(\left|e_{t}^{\mathbf{Q}}-e_{t^{\prime}}^{\mathbf{Q}}\right|<\epsilon, \text { True }\right) . \\
& \simeq-\sum_{\mathbf{Q}^{\prime} \in \Omega^{t r}} \sum_{t^{\prime}=1}^{\left|\mathbf{Q}^{\prime}\right|} \boldsymbol{M}_{t^{\prime}}^{\mathbf{Q}^{\prime T}} \boldsymbol{\Delta}_{o}^{\mathbf{Q}^{\prime}} \alpha_{t^{\prime}}^{\mathbf{Q}^{\prime}} p_{t^{\prime}}^{\mathbf{Q}^{\prime}} I\left(\left|e_{t}^{\mathbf{Q}}-e_{t^{\prime}}^{\mathbf{Q}}\right|<\epsilon, \text { True }\right) I\left(w_{t^{\prime}}^{\mathbf{Q}} \in S^{d}, \text { True }\right) .
\end{aligned}
$$

Here,

$$
\operatorname{sign}\left(\boldsymbol{M}_{t^{\prime}}^{\mathbf{Q}^{\prime} T} \Delta_{o}^{\mathbf{Q}^{\prime}} \alpha_{t^{\prime}}^{\mathbf{Q}^{\prime}} p_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right)=\chi R\left(w_{t^{\prime}}^{\mathbf{Q}^{\prime}}\right)
$$

Thus, if $w_{t}^{\mathbf{Q}} \in S^{d}$, then,

$$
\operatorname{sign}\left(s_{t}^{\mathbf{Q}}\right)=-\chi R\left(w_{t}^{\mathbf{Q}}\right)
$$

