
APPENDIX

This section briefly explains the sentiment propagation

mechanism in the IP learning for the CSNN.

A. Effect of IP learning for WOSL, SSL, WLCSL

Notation. Let us define R(·) and PN(·) as

R(wQ
t ) :=

{

−1 (sentiment of wQ
t is shifted)

1 (otherwise)
,

(8)

PN(wQ
t ,Q) :=

{

1 (sign(dQ − 0.5) 6= (R(wQ
t ))

−1 (dQ = (sign(dQ − 0.5) = (R(wQ
t ))
(9)

where PN(wQ
t ,Q) = 1 denotes the case where the senti-

ment of term wQ
t is shifted in a negative review Q or the

sentiment of term wQ
t is not shifted in a positive review, and

PN(wQ
t ,Q) = −1 denotes the opposite case.

Moreover, we define Condition A.1 as

Condition A.1: if word wi in Sd then,

wp
i

{

> 0 (OS(wp
i ) > 0)

< 0 (OS(wp
i ) < 0)

(10)

is satisfied, where

OS(wp
j ) := E[PN(wQ

t ,Q)|wQ
t = wp

j ,Q ∈ Ωtr].

and Ωtr is a set of reviews in a training dataset.

Here, the following Proposition A.2 is satisfied:

Proposition A.2: If Condition A.1 is satisfied, and

minwi∈Sd ‖wem
i − wem

j ‖2 < δ where δ(> 0) is sufficiently

small, then, the following equations are satisfied for word wj

after sufficient iterations through IP learning:

E[wp
j ]

{

> 0 (OS(wp
j ) > 0)

< 0 (OS(wp
j ) < 0)

, (11)

E[sQt ]

{

> 0 (R(wQ
t ) > 0)

< 0 (R(wQ
t ) < 0)

(12)

Proposition A.2 denotes that if the meaning of a term wj is

sufficiently similar to any of words in Sd and Sd satisfies

Condition A.1, then, its word-level original sentiments and

sentiment shifts are expected to be accurately assigned by

the CSNN. The quality of the word sentiment dictionary is

important for the success of propagation, where |Sd| should

not be too small and each word in Sd must satisfy Condition

A.1. This proposition can be explained using the following

propositions A.3–A.6.

Proposition A.3: For every cQt ∈ {{c
Q
t }

n
t=1|Q ∈ Ωtr},

∂LQ

∂cQt

{

< 0 (dQ = 1)
> 0 (dQ = 0)

(13)

where

cQt := pQt · s
Q
t .

Proposition A.4: If dQ = 1 and wp
i > 0, or dQ = 0 and

wp
i < 0 word wi = wQ

t , then, ∂LQ

∂s
Q
t

< 0. In the opposite case,

∂LQ

∂s
Q
t

> 0.

Proposition A.5: Let DQ
i be a set of passages that include

word wi, and t′(Q, i) be {t′|wQ
t′ = wi, w

Q
t′ ∈ Q}. If

‖wem
i −wem

j ‖2 < δ, (14)

min
t′∈t′(Q,i),Q∈D

Q
i

‖
−→
h

Q
t −

−→
h

Q
t′ ‖2 < T ′δ, (15)

and

min
t′∈t′(Q,i),Q∈D

Q
i

‖
←−
h

Q
t −

←−
h

Q
t′ ‖2 < T ′′δ, (16)

where δ > 0 is established, then,

min
t′∈t′(Q,i),Q∈D

Q
i

‖sQt − sQt′ ‖2 < T ′′′δ (17)

where T ′ > 0, T ′′ > 0, T ′′′ > 0, and wj = wQ
t .

Proposition A.6: If wj satisfies

{

sQt < 0 (R(wQ
t ) = −1, wt = wj)

sQt > 0 (R(wQ
t ) = 1, wt = wj)

(18)

, then, wj satisfies






∂LQ

∂w
p
j

< 0(PN(wQ
t ,Q) = 1 ∧ wQ

t = wj)

∂LQ

∂w
p
j

> 0(PN(wQ
t ,Q) = −1 ∧ wQ

t = wj)
. (19)

Proposition A.7: Let the values of WO before and after

performing Update in Algorithm 1 in the tth iteration be

W
O,a
t and W

O,b
t , respectively. Then,

‖WO,a
t −W

O,b
t ‖2

‖WO,b
t ‖2

−−−→
t→∞

0. (20)

B. Effect of IP learning for GIL

In IP learning, the values of GIL are assigned in the form

that terms with strong sentiment are attentioned:

∂LQ

∂αQ
t

= M
Q
t

T
∆Q

o · s
Q
t · p

Q
t (21)

where

M
Q
t := W ob

Q
t diag(1− (tanh(

n
∑

t=1

v
Q
t ))2), (22)

∆Q
o :=

{

(aQ − (1, 0)) (dQ = 0)
(aQ − (0, 1)) (dQ = 1)

, (23)

M
Q
t

T
∆Q

o

{

> 0 (dQ = 0)
< 0 (dQ = 1)

. (24)

This attention manner is known to be natural for humans [6].

Proposition A.8: When Init is used, then, if minwj∈Sd |eQt −
wem

j | < ε where ε > 0 is sufficiently small, then,

sign

(

∂LQ′

∂pQ
′

t′

)

=







R(w
Q′(wQ′

t′
,wj)

t′ ) (dQ = 0)

−R(w
Q′(wQ′

t′
,wj)

t′ ) (dQ = 1)
.

where

I(a, b) :=

{

1 (a = b)

0 (a 6= b),
,Ψ(a, b) :=

{

1 (a = b)

−1 (a 6= b)



is established.

Proposition A.8 explains the effect of Init for the word-level

original sentiment assignment property of CSNN.

C. Proofs of Propositions A.3–A.7

We introduce the proofs of Propositions A.3–A.7

1) Proof of Proposition A.3:

∂LQ

∂cQt

=
∂LQ

∂aQ

∂aQ

∂(tanh(
∑n

t=1 v
Q
t ))

∂(tanh(
∑n

t=1 v
Q
t ))

∂
∑n

t=1 v
Q
t

∂
∑n

t=1 v
Q
t

∂gQt

= ∆Q
o W ob

Q
t diag(1− (tanh(

n
∑

t=1

v
Q
t ))2)αQ

t

= M
Q
t

T
∆Q

o αQ
t

where

M
Q
t = W odiag(1− (tanh(

n
∑

t=1

v
Q
t ))2)bQt

∆Q
o =

{

aQ − (1, 0)T (dQ = 0)

aQ − (0, 1)T (dQ = 1)

Here, ∂L
∂cQ

is positive and negative when dQ = 0 and

dQ = 1, respectively, (t = 1, 2, · · · , n, ) because mQ
t , 0 ≤ 0

and mQ
t , 1 ≥ 0 by Update. Therefore, the proposition is

established.

2) Proof of Proposition A.4:

∂LQ

∂sQt
=

∂LQ

∂cQt

∂cQt

∂sQt
= M

Q
t

T
∆Q

o αQ
t pQt

∂LQ

∂sQt
=

∂LQ

∂cQt

∂cQt

∂sQt
=

∂LQ

∂cQt
pQt (25)

where word wi = wQ
t ,and the pt,i is the ith element of pt.

Therefore, from Proposition A.3 and the above Eq (25), this

proposition is established.

3) Proof of Proposition A.5: Proposition A.5 can be ex-

plained as follows. Here, Eq (15) can be explained from the

property of the skip-gram method: if ‖wem
i − wem

j ‖ < δ
and the value of δ is sufficiently small, then, the appearance

patterns of the word wi and wj are similar.

Proof.

For every t′ ∈ t′(Q, i),Q ∈ DQ
i ,

‖sQt − s
Q′

t′ ‖ = ‖ tanh(v
leftT←−hQ

t ) · tanh(vrightT−→hQ
t )−

tanh(vleftT←−hQ′

t′ ) · tanh(vrightT−→hQ′

t′ )‖

= ‖ tanh(vleftT (
←−
h

Q
t −

←−
h

Q′

t′ ) · tanh(vrightT←−hQ
t )

+ tanh(vleftT (
←−
h

Q′

t′ )) · tanh(vrightT (
−→
h

Q
t −

−→
h

Q′

t′ ))‖

< ‖ tanh(vleftT (
←−
h

Q
t −

←−
h

Q′

t′ )) · tanh(vrightT−→hQ
t )‖

+‖ tanh(vleftT (
←−
h

Q′

t′ )) · tanh(vrightT (
−→
h

Q
t −

−→
h

Q′

t′ ))‖

< δ(‖vright‖+ ‖vleft‖)

Thus,

min
t′∈t′(Q),Q∈D

Q
i

‖rIt − rQt′ ‖ < T ′′′δ

where T ′′′ = ‖vright‖+ ‖vleft‖ is established. Therefore this

proposition is established.,

4) Proof of Proposition A.6: In the update process using

Q ∈ Dtr,

∂LQ

∂wp
j

=
n
∑

t=1

∂LQ

∂cQt

∂cQt

∂pQt
I(wj , p

Q
t ) =

n
∑

t=1

∂LQ

∂cQt
sQt I(wj , p

Q
t ) (26)

is established. Here, when wj = pQt , all the values of {sQt }
satisfy Eq (18). Thus, this proposition is established.

5) Proof of Proposition A.7: Proof After the sufficient time

of update iterations, for every j,

u3,Q := tanh(
n
∑

t=1

v
Q
t )

E

[

∂LQ

∂wO
1,j

]

= E





∑

Q∈Dmini

∆Q
o,1(u

3,Q
j )T



 > 0

E

[

∂LQ

∂wO
2,j

]

= E





∑

Q∈Dmini

∆Q
o,2(u

3,Q
j )T



 < 0

where wO
i,j is the (i, j) element of WO and Dmini is the

mini-batch dataset in the learning. Therefore, considering that

each value of u3,Q is negative and positive when dQ = 0 and

dQ = 1, respectively, is established because Proposition A.3

is established. Therefore, Proposition A.7 is established.

6) Proof of Proposition A.8: First,

∂LQ

∂pQt
=

∂LQ

∂cQt

∂cQt

∂pQt
= M

Q
t

T
∆Q

o αQ
t sQt ,

∂LQ

∂sQt
=

∂LQ

∂cQt

∂cQt

∂sQt
= M

Q
t

T
∆Q

o αQ
t pQt ,

and

∂LQ

∂wO
1,j

= ∆Q
o,1(u

3,Q
j )T ,

∂LQ

∂wO
2,j

= ∆Q
o,2(u

3,Q
j )T (27)

where

∆Q
o,1 = −∆Q

o,2

are established. Therefore,

−wO
1,j = wO

2,j(= ωj) (28)

is established. Moreover,

∂LQ

∂u3,Q
=

∂LQ

∂a

∂a

∂wo
j

= ∆Q
o W o = ∆Q

o [−ω;ω]

=

{

2|∆Q
o,1|ω (dQ = 0)

−2|∆Q
o,1|ω (dQ = 1)

(29)



is established. Therefore, after the sufficient time of iterations,

E[u3,Q] =

{

−kω (dQ = 0)

kω (dQ = 1)

where k > 0 is expected to be established.

Therefore,

M
Q
t

T
∆Q

o = b
Q
t

T
diag(1− (tanh(

n
∑

t=1

v
Q
t ))2)W oT∆Q

o

= b
Q
t

T
diag(1− (tanh(

n
∑

t=1

v
Q
t ))2)W oT∆Q

o

=

{

2|∆Q
o,2|b

Q
t

T
diag(1− (tanh(

∑n
t=1 v

Q
t ))2)ω (dQ = 0)

−2|∆Q
o,2|b

Q
t

T
diag(1− (tanh(

∑n
t=1 v

Q
t ))2)ω (dQ = 1)

Moreover, after the sufficient times of iterations,

sign(ω1) = sign(ω2) = · · · = sign(ωk) (30)

is established because Eq (27) and

u3,Q =
n
∑

t=1

v
Q
t =

n
∑

t=1

gQt b
Q
t

where

sign(vQt,1) = sign(vQt,2) = · · · = sign(vQt,k).

are satisfied, and in sufficient times of cases,

u3,Q ' gQ
t̂
b
Q

t̂
(31)

where

t̂ = argmaxtg
Q
t .

Eq (31) occurs because

E[pQt |w
Q
t ∈ Sd] >> E[pQt |w

Q
t /∈ Sd]

E[αQ
t | min

wj∈Sd
|wQ

t −w
em
j | < ε] >> E[αQ

t | min
wj∈Sd

|wQ
t −w

em
j | ≥ ε],

where ε is sufficiently small, and |Sd| is sufficiently small.

Therefore,

sign(MQ
t

T
∆Q

o ) =

{

−χ (dQ = 0)

χ (dQ = 1)
.

Thus,

sQt ' ε−
∑

Q′∈Ωtr

|Q′|
∑

t′=1

M
Q′

t′

T

∆Q′

o αQ′

t′ pQ
′

t′ I(|eQt −e
Q
t′ | < ε, True).

' −
∑

Q′∈Ωtr

|Q′|
∑

t′=1

M
Q′

t′

T

∆Q′

o αQ′

t′ pQ
′

t′ I(|eQt −e
Q
t′ | < ε, True)I(wQ

t′ ∈ Sd, T rue).

Here,

sign(MQ′

t′

T

∆Q′

o αQ′

t′ pQ
′

t′ ) = χR(wQ′

t′ )

Thus, if wQ
t ∈ Sd, then,

sign(sQt ) = −χR(wQ
t )

is established because each wj ∈ Sd satisfies Condition A.1.

Therefore, in such a situation,

sign

(

∂LQ

∂pQt

)

= sign(MQ
t

T
∆Q

o αQ
t sQt )

'

{

χ2R(wQ
t ) = R(wQ

t ) (dQ = 0)

−χ2R(wQ
t ) = −R(wQ

t ) (dQ = 1).

Therefore, if |eQt − wem
j | < ε where ε > 0 is sufficiently

small, then, the following equation is established.

∂LQ′

∂pQ
′

t′

= M
Q′

t′

T

∆Q′

o αQ′

t′ sQ
′

t′ 'M
Q′

t′

T

∆Q′

o αQ′

t′ s
Q′(wQ′

t′
,wj)

t′

Therefore,

sign

(

∂LQ′

∂pQ
′

t′

)

=







R(w
Q′(wQ′

t′
,wj)

t′ ) (dQ = 0)

−R(w
Q′(wQ′

t′
,wj)

t′ ) (dQ = 1)
.

because

sQ
′

t′ ' s
Q′(wQ′

t′
,w

Q
t )

t′

due to |eQt − eQ
′

t′ | < ε where ε > 0 is sufficiently small, is

established.

Thus, Proposition A.8 is established.


