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Abstract

The use of networks to analyze biological data, such as large gene or protein
expression datasets, is on the rise. Often, there is an interest of identifying
modules (or communities) of biological molecules that may be associated to
known functions. This functional modularity analyses usually revolve around a
workflow that combines 1) a method for network reconstruction from biological
data, 2) a community or clustering algorithm on a network, and 3) an enrichment
analysis to associate modules to known biological categories. With this, it is
possible to identify sets of functions associated to modules in networks of distinct
biological conditions, allowing for the comparison of such different phenotypes.

Currently there is no set of recommendations for such analyses, which can lead
to problems in assessing these results for a given biological context. Furthermore,
without properly identifying the methodological scopes and limitations at each
stage for a given functional modularity analysis, it is not immediately possible to
compare the biological implications of analyses in different phenotypes.

In this work, critical points in a functional modularity analysis for biological
networks are identified, and methods are proposed for assessing the topological
and biological results of functional modularity analyses in biological networks, and
to calculate topological and functional similarity between comparable phenotypes.
These methods are demonstrated on biological networks artificially constructed
from known biological pathways.

Keywords: Communities; Modularity; Biological Networks; Functional
enrichment

Background
The emergence of high-throughput technologies for the study of biological systems

has lead to the use of several data-centric strategies for their study. Among these,

techniques derived from network science are increasingly being adopted [1, 2, 3].

A well described property of biological systems is their modular structure[4], with

different biological functions being controlled by different sets of molecular interac-

tions [5].

As biological network analysis becomes an increasingly important tool in the

study of biological systems, the detection of modular structures in this networks,

and module enrichment (the association of these modules or communities to known

biological functions) becomes more commonplace [6, 7, 8, 9]. A PubMed query for

networks, clusters, modules, and enrichment returns over 900 hits, with 222 from the

year 2018 alone (see Additional File 1 for an illustration). As this trend continues,
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it will be important for biological and biomedical researchers to identify critical

points in the workflows used for such analyses.

Critical points in a typical modular analysis of a biological network

There are many different methodological strategies available for the construction

of networks from biological data, for the identification of biological communities or

modules in these networks, and for the association of known biological functions to

these modules of biomolecules). In general, these analysis pipelines will consist of

three steps:

1 A methodology for network construction: these include the integration of

known biomolecular interactions from available literature [10] or public

databases such as The Kyoto Encyclopedia of Genes and Genomes (KEGG

)[11] or the Search Tool for the Retrieval of Interacting Genes database

(STRING-db) [12], or probabilistic methods of gene or protein co-expression

inference [7, 13, 14].

2 An algorithm for the identification of communities or modules in the network:

there is an abundant body of published algorithms for the detection of com-

munities in large complex networks based on different approaches[15].

3 An enrichment analysis to associate the modules to known biological processes

or functions: There is a variety of methods using different approaches [16] that

may be used to associate, the sets of biomolecules that form each module to

sets of biomolecules that are known to be involved in biological functions,

such as those described in databases like the aforementioned KEGG or the

Gene Ontology [17].

With many different combinations of methodologies available for these module en-

richment studies, it becomes difficult to assess whether the results obtained through

one pipeline are comparable to results obtained from another. In this work, we will

find parameters that allow for the quantitative comparison of modular structures

of biological networks from a topological and functional perspective.

Data
In this work, we use four different biological networks, with nodes representing

genes. These networks are constructed by merging different pathways obtained

from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [11] into undirected,

unweighted graphs. A visualization of this networks is found in figure 2.
:::::
Figure

::
1.
:

We will describe different measures to compare these networks and their modular

structures from a topological and functional perspective. For this, we will identify

each network as follows:

1 The first network is the Main network. It is constructed by merging 5 pathways

(as mentioned in Methods). This will be the network against which other

networks will be compared.
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2 The second network is the Alternative network. It was constructed from path-

ways with almost no overlap to the ones used to build the Main network.

3 The third network is the Mixed network, constructed from two pathways from

Main and two pathways from Alternative.

4 The last network is a Rewired network derived from the Main network.

Modular structure comparison pipeline
Consider a pipeline for the comparison of modular structures in biological networks,

containing the aforementioned critical points. In figure 1
:::::
Figure

::
2, a graphical repre-

sentation of this proposed pipeline is shown, indicating the quantitative parameters

that may be used for the comparison of networks at each level. In what follows, we

will explore each of these comparison levels, using a set of artificial networks gener-

ated from known biological pathways, which attempt to represent likely structures

of networks generated from biological data.

Network topological comparison
The first critical step is to assess the comparability of biological networks. To do

so we must describe the topological features of these networks. Since a common

use-case for network analyses in the biological sciences is data exploration, these

descriptors are readily available. Importantly, these features will be directly related

to the way the networks are originated: whether they are curated from literature,

inferred using a probabilistic approach from high throughput data, reconstructed

through experimental methods, etc. The decision on whether networks are compa-

rable based on their structural patterns can only be assessed based on the biological

question of interest. For instance:

• Two sets of genes associated to two different biological conditions are used as

the bases for network construction; these gene sets may have different sizes,

and therefore the number of nodes will be different.

• A method for the inference of whole-genome co-expression network is used

for two different biological conditions; the set of associated co-expression re-

lationships may differ between the two conditions.

A researcher shall consider, based on their originating data and the biological

question at hand, at what level the networks are comparable. Furthermore, the re-

sults and biological insights derived from these networks shall be explicitly described

in this context.

Table 1 Basic Network Descriptors

Main Alternative Mixed Rewired
No.Nodes 276 228 189 276
No.Edges 692 723 596 692

No.Components 1 11 3 3

By construction, we generated two networks (Alternative and Mixed networks)

that are different from our Main Network in terms of number of nodes and edges.

Meanwhile, we generated a Rewired network that has the same number of both

nodes and edges. Some basic descriptors of these networks are found in Table 1.
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Table 2 Node similarity, compared to the Main network

Jaccard Index, nodes
Main 1.00

Alternative 0.03
Mixed 0.32

Rewired 1.00

Furthermore, none of the networks have the same degree distribution, as illustrated

in Figure 3.

For the purposes of functional comparability of nodes, perhaps the most imme-

diate parameter to consider is the similarity in number of nodes, as this will be a

decision point in further comparison. Differences in the number of edges are how-

ever, quite important in the context of module analysis, as these modules are defined

not only by nodes but by the connections between them. This consideration could

be extended to the influence of a difference in component number, as a network

with more than one component will, by definition, have at least one pair of nodes

without a linking path.

The biological network structures associated to different phenotypes will hopefully

reflect the differences between the underlying biological phenomena. The modular

structure will inherit from these network structures. This shall be kept in mind

while discussing the results of further analyses.

Node set identity comparison

It is important to assess not only the topological similarity of networks, but whether

the biological elements that are represented in the networks are comparable. In or-

der to do this, a similarity measure is used to compare the identity (ie, labels) of

nodes in different graphs. For instance, we could use the Jaccard index (J), as seen

in Table 2.
:::::::
Jaccard

:::::
index

::::
and

:::::
other

:::::::::
measures

:::::
used

::::::::::
throughout

:::
the

:::::::::::
manuscript

:::
are

::::::
defined

:::
in

:::
the

::::::::
Methods

:::::::
section.

The rewired network has exactly the same set of nodes representing genes, as it

was generated by reconnecting the Main network, whereas the others are dissimilar

to the original one. It can be noticed that the alternative network is not completely

dissimilar to the original one (as one may naively guess), since there is a small

overlap in the genes composing the pathways used for the construction of the Main

and alternative networks (13 genes in total). Edge similarity can also be evaluated,

as seen in table
:::::
Table

:
3.

Table 3 Edge similarity, compared to the Main network

Jaccard Index, edges
Main 1.00

Alternative 0.00
Mixed 0.26

Rewired 0.37

Again, a similarity threshold for nodes and edges must be defined in terms of

the biological question that is being studied. For instance, a biological question in

itself could be if networks reconstructed from two different conditions using the
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same methodology is composed of the same biological molecules. In other cases, it

is necessary for the networks to be composed by the same set of nodes.

For the purposes of module comparison, whether the node set of each network to

be compared is a critical point that defines which methods are available to compare

the modular structures of two different networks.

Comparison of modular structures
Once the structural comparability of the networks has been assessed, it would be

possible to analyze and compare the modular structures that are identified.

Election of the module detection algorithm

Selecting the module detection algorithm for a given analyses is an open problem

[18]. Ideally, the selected algorithm would be able to recover an organization of the

constituent elements in the network that has its origin in a biological phenomenon.

Assessing how suitable an algorithm is would then consist on evaluating how well

it recovers such structures. Unfortunately, in the case of biological networks such

ground truth is seldom available.

Comparing partitions generated by an algorithm to the ground truth organiza-

tion is a problem that can be approached with different well described techniques.

Several methods have been developed and implemented: these include Variation of

Information [19], Normalized Mutual Information [20], Adjusted Mutual Informa-

tion [21], split-join distance [22], and (adjusted) Rand index [23, 24]. A description

of these methods is beyond the scope of this manuscript (see [25] and [26]) , but

are noted for such cases in which such ground truth was available. When such

information is unavailable, it will be necessary to resort to heuristics, or to identify

consensus between algorithms.

For this work, different algorithms were tried and the partitions generated com-

pared to each other (see Additional file 2, in which different module detection algo-

rithms are compared using Adjusted Mutual Information). For simplicity, through-

out the manuscript the results of the Infomap algorithm will be used. The decision

to use this algorithm was arbitrary, since the intention is to illustrate the critical

points of the functional module analysis workflow.

Evaluation and comparison of modular structures

Having identified modular structures in each biological network, the question is how

similar are these modular structures to each other. A first approach is to obtain and

compare descriptors of these modular structures. The modularity value Q [27, 28]

measures whether a proposed division of a network is adequate capturing commu-

nities, in the sense of recovering groups with a higher proportion of edges within

the group than to other groups.

In the case of comparing different biological networks and their associated modu-

lar structures, by comparing the value of Q for each network partition it is possible

to assess if there is one network in which the module detection algorithm, applied
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to each network, identified a more modular structure. In Table 4, the results for the

example networks are shown.

Table 4 Modularity of the Infomap Partition

Q
Main 0.75

Alternative 0.85
Mixed 0.77

Rewired 0.48

The measure of modularity Q is readily available in network analysis packages.

While widely used, there are limitations in the use of Q as a sole measure of the

modular structure of a network identified by a module detection algorithm: partic-

ularly, it should be noted that since this metric is used as an optimization criterion

for certain module detection algorithms, it could bias comparisons [18]. Further

descriptors should be used in order to more adequately capture the differences in

modular structures.

The node similarity of the networks is critical to decide how to compare modular

structures. The methods available for networks with identical node sets will be

different to those for networks composed of non-identical node sets.

Comparison of modular structures in networks with identical node sets

If the node sets of the networks to be compared are identical, then the problem of

comparing their modular structures is not entirely unlike the previously described

problem of comparing modular partitions on the same network derived from differ-

ent algorithms: instead of comparing a partition of graph G1 obtained by algorithm

A with the partition of G1 obtained by algorithm B (or perhaps to a ground truth

partition), it would be a comparison of the partitions obtained using algorithm A

of graphs G1 and G2.

To do such comparison, the methods previously mentioned when discussing the

election of module detection algorithms are available. For the purposes of this

manuscript, two of the constructed networks were generated to satisfy the con-

dition of containing the same set of nodes: the Main and Rewired networks. In

table
:::::
Table 5, the use of the different comparison methods is illustrated, as applied

to these networks.

Table 5 Comparison of modular structures detected using the Infomap algorithm Main vs Rewired
networks

Method Value
variation of information 2.28

normalized mutual information 0.63
split-join distance 222.00

Rand index 0.93
adjusted Rand index 0.34

By using these results it is possible to provide an overall descriptor of how dif-

ferent is the organization of elements in the network, derived from the differences

in network structure, as identified by the module detection algorithm. However,

it is important to point out that the methods previously described consider only
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the membership of nodes into different modules. Since the module structure in this

networks contains also topological information, it is possible to approach this com-

parison from a topological perspective.

To illustrate such comparison, three topology-based comparisons between the

Main and Rewired networks are presented. The first one consists on comparing

the distribution of the module sizes identified in each network. The second is the

comparison of the distribution of embeddedness [29] , a measure of the amount of

neighbors of each node which belong to its own module. A third one is the compari-

son of the distribution of modular degree [30], which extends on the classical notion

of degree centrality to describe both the local and global influence of a node in the

network. In figure
::::::
Figure 4 we observe that, based on any of these parameters, the

modular structure of each network exhibits differences.

It should be noted that the topology-based comparisons presented here are only

a few of the possible options to incorporate this dimension of analysis. In [26] a

more extensive discussion on the subject is found. Nevertheless, the reader should

consider using such level of description to more thoroughly evaluate (and convey)

the differences in modular structures, and the implications regarding the differences

in the underlying biological phenomena.

Comparison of modular structures in networks with non-identical node sets

In the case of networks where node sets are not identical, it may not be feasible to

compare using the aforementioned metrics, as the algorithm implementations are

written with identical node sets in mind.

Let us focus on the similarity of modules in each network, in terms of nodes and

edges. A matrix of a similarity measure (such as Jaccard index) may be computed,

in which each module of the first network is compared to each module of the second

network. We provide such matrices for the comparison of the Alternative and Mixed

networks against the Main network as Additional File 3. Similarity matrices allow

to answer the following questions:

• Whether there are modules in the first network that have some overlap with

modules in the second network.

• Whether there are modules in the first network that are perfect matches to

modules in the second network.

A global parameter of similarity can be defined to have a descriptor for each

network. In this work, we have defined a Similarity Score in terms of the similarity

matrix for each pair of networks (see Methods).

In table
:::::
Table

:
6 we find the comparison of the Alternative or Mixed networks

against the Main network in terms of module node composition. It shows the number

of modules in Main that had at least one non-zero overlap with module in the test

networks, and the number of modules of Main that perfectly match with a module

in the test networks.

In table
:::::
Table 7 we find again a comparison of the Alternative or Mixed networks

against the Main network, this time in terms of edge composition. We may notice
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Table 6 Comparison of modular structures detected using the Infomap algorithm between the
Main network and the Alternative or Mixed networks, based on module node similarity

Similarity Score Matching.Modules Perfect.Matches
Alternative 0.020 7 0

Mixed 0.377 11 9

that in terms of edges, the similarity between the Alternative and Main network is

much more penalized.

Table 7 Comparison of modular structures detected using the Infomap algorithm between the
Main network and the Alternative or Mixed networks, based on module edge similarity

Similarity Score Matching.Modules Perfect.Matches
Alternative 0.001 1 0

Mixed 0.367 11 9

By comparing the similarities of these partitions, we are able to identify how

much are the biological differences of each condition being captured in the modular

structures of networks. Furthermore, we gain further information for the discussion

of the functional associations identified for each module: for instance, whether func-

tions are being associated to similar or dissimilar modules. The comparison of these

modules at the functional level is the topic of the next section.

Functional comparison of modules
Now the modules will be compared in terms of the associated biological functions

identified by an enrichment analysis. This comparison involves answering three com-

plementary questions:

• How similar are the sets of biological functions that are associated to the

whole network, through the enrichment of individual modules?

• How similar are the modules found in each network, in terms of the sets of

associated biological functions?

• In how many modules is represented each biological process?

When comparing these biological processes, it is important to remember that it

is possible for networks composed of different genes to be associated to the same

processes and functions. In other words, networks could be functionally comparable

even if their node identities are dissimilar. On the other hand, if the genes that

integrate the biological functions being evaluated are not present in the networks,

these biological functions will not be identified by an enrichment analysis.

Comparison of biological function sets associated to the overall network

The sets of all biological functions identified in each network are to be compared in

terms of similarity. By analyzing the sets of identified biological functions for each

network, as shown in Table 8, we can compare and contrast which functions are

shared by both networks or uniquely found in each. From the biological perspective,

this provides a good starting point to discern which functions or processes may be

associated to each condition of interest.

While this comparison is useful as a first approximation, it is soon evident that

this is not necessarily considering the modular nature of the network. As such, we

will now perform a comparison at the level of individual modules.
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Table 8 Similarity of enriched processes associated to the overall network

Similarity of Enriched Processes , Jaccard Index
Main 1.00

Alternative 0.50
Mixed 0.30

Rewired 0.88

Similarity of modules in terms of associated biological functions

It is possible to compare each module of the network of interest to the modules

of another network, in terms of their associated biological functions. A similarity

matrix can be calculated for the pair of networks, allowing the identification of

modules that are functionally similar in each network, as seen in Table 9.

Table 9 Number of modules in networks that have Jaccard index J = 1 with a module of the
Main network

Module of Main
Network 1 2 3 4 5 6 7 8 9 10 11 12 13 14

::::::::
Alternative

:

15
:::::
Mixed 16

::::::
Rewired

:
1 17

:
0 19

:
3 20

:
2
:

Alternative
:
2

0 0 0

:
3

0 0 0

:
4

0 0
0

:
2

:
5

0 0
0

:
1

:
6

0
0
:
2
:

0
:
3

:
7

0
0
:
2
:

0
:
3

:
8

0 Mixed
:
2

3

:
9

0 0
0

:
1

::
10

:

0
2
:
0
:

2
:
1

::
11

:
2
:
0
:

0 0

::
12

:

0 3
3

:
2

::
13

:

0
0
:
3
:

0
:
2

::
14

:

0
3
:
0
:

0

Rewired 2
::
15

0 0
2 1

::
16

:
3 3

:
0
:

3
:
0
:

1

::
17

:
1
:
0
:

0
2

:
1

::
18

:
2
:
0
:

0
1

:
0

::
19

:
1
:
0
:

1
:
3
:

2

::
20

: :
0

:
0

1

It is important to consider that, since more than a biological function could be

associated to more than one module in a network, it is possible to find, for a given

module in a network, more than one functionally similar module in another network.

Number of modules associated to a given biological function

As it has been mentioned before, it is possible for more than one module to be

associated to a given biological function. Therefore, another comparison parameter

that can be used to assess the similarities between two biological networks is to

evaluate, for each identified biological function, the number of modules that were
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found to be enriched in that particular function.

It is possible to calculate a distance (for instance, Euclidean) between two net-

works based on the number of modules associated to each biological function found

in the networks, as it is shown in Table 10.

Table 10 Functional Euclidean Distance of network modules

Functional Euclidean Distances
Main 0.00

Alternative 10.20
Mixed 8.77

Rewired 6.00

Assessing similarity of modular structures
The final integration of all comparison parameters in order to assess the similarity

of the modular structures in biological networks must be guided by the research

question that is to be answered by this comparison. In other words, it would not

be possible to establish general thresholds for what is to be accepted as similar or

dissimilar.

Furthermore, the objective of the comparison will determine the weight given to

a parameter for the definition of comparability. In Table 11, we observe the overall

comparison of our three test networks against our Main network. As it has been

shown throughout the manuscript, it is possible to determine a quantitative (or

semi-quantitative) value of comparison for each network, which can be informative

of the points of similarity and divergence between the networks and their associated

modular structures.

The alternative network is very dissimilar in terms of node composition. We

observe, however, that even then there is some similarity in terms of the overall

functions associated to the network. Nevertheless, we find that there are no mod-

ules in the Alternative network that precisely reflect the functionality associated to

the modules in the Main network. Meanwhile, the mixed network has some overlap

in terms of node and edge composition. It exhibits a degree of module topological

similarity, and is also functionally closer to the Main network. In relative terms, it

is possible to establish that the Mixed network is both topologically and function-

ally closer to the Main network than the Alternative, which is consistent with the

construction of these networks.

The Rewired and Main networks are identical in terms of number of nodes and

edges, as well as the identity of nodes, by construction. They were also guaran-

teed by construction to be different in terms of edges. Since these networks were

composed by the same set of nodes, it was possible to compare their modular

structures using a well defined parameter of similarity, such as Normalized Mutual

Information. Furthermore, we observe that these two networks are very similar in

functionality terms.
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Table 11 Comparison of the modular structure of the Main network

Parameter Alternative Mixed Rewired
No. Nodes Lesser Lesser Equal
No. Edges Greater Lesser Equal

Node Similarity (J) 0.03 0.32 1.00
Edge Similarity (J) 0.00 0.26 0.37

Modularity (Q) Greater Greater Lesser
Module Topological Similarity SimScoreedge =

0.01
SimScoreedge =

0.30
nmi =
0.63

Network Functional Similarity (J) 0.50 0.30 0.88
Main modules with functionally similar

counterparts
0/20 7/20 15/20

Functional Euclidian Distance 10.20 8.77 6.00

On the subject of biological comparison versus validation

An open question remains on how to decide whether a network model is comparable

to another network model for the purposes of modular structure comparison. As

we have discussed, the two most common situations where a comparison would be

necessary are A) the comparison of biological conditions and B) the validation of a

biological network model.

Consider that networks that are derived from experimental datasets may or may

not be necessarily composed of the same set of nodes, either by technical or bio-

logical conditions. In this case, if the experimental settings of each condition are

comparable, and the methods for network inference, module detection, and en-

richment analysis used in each case are the same, then a comparison in terms of

functional similarity is feasible. This setting could also be used for the validation of

functional findings, for instance if using a discovery and validation set. An example

of such use-case is found in [31].

Meanwhile, if the objective is the validation of any of the steps of the modular

analysis pipeline, it would be important to evaluate the comparability of modular

structures and functional enrichment analyses in the context of a network with the

same set of nodes and number of edges. Importantly, if a rewiring algorithm is

used, the limitations of the implementation should be discussed; for instance, the

rewiring algorithm used for the generation of the Rewired network in this work does

not preserve the degree distribution, and as such it would not be an adequate model

to generate null models for the assessment of functional associations.

Conclusions
The study of modularity in biological networks provides opportunities to under-

stand the organization of biological phenomena and how these structures shape

functionality. In this work, we provide a guideline to quantitatively compare mod-

ular structures in biological networks, in topological and functional terms. This

provides a basis to identify aspects of network modular structures that may guide

the discussion regarding phenotype comparison from a network perspective, as well

as some critical points for the validation of network models.

Methods
All methods used for this work are available at

https://github.com/guillermodeandajauregui/BiologicalModuleComparison
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Network Generation

We generated four networks by acquiring network representations of pathways in

KEGG using the Graphite package [32]. For each of the networks Main, Alternative,

and Mixed, the pathways listed in Table 13
::
12

:
were used. In each case, pathways

were merged into a single undirected, unweighted network to be analyzed using

Igraph [33].

Table 12 Source pathways for the model networks

Main Alternative Mixed
Hedgehog signaling pathway Pentose phosphate pathway Hedgehog signaling pathway

NF-kappa B signaling pathway Notch signaling pathway Notch signaling pathway
VEGF signaling pathway mRNA surveillance pathway Pentose phosphate pathway

p53 signaling pathway TGF-beta signaling pathway p53 signaling pathway
RIG-I-like receptor signaling pathway IL-17 signaling pathway

The Rewired network was generated by taking the Main network and using a

rewiring algorithm as implemented in Igraph [33], in which the endpoints of edges

from network 1 were reconnected randomly, with a uniform rewiring probability of

0.25.

Module detection

Modules for the four networks were detected using the Infomap algorithm [34] as

implemented in Igraph. Additionally, modules were detected for the Main network

using the Girvan-Newman edge-betweenness algorithm [35], the Fast-Greedy al-

gorithm [28], the Louvain method [36], the Walktrap method [37], the spin-glass

method [38], the leading eigenvector method [39], and the label propagation method

[40].
::
A

:::::::::::
comparison

::
of

:::::
these

:::::::::::
algorithms,

::::::::
including

::
a
::::::::::
description

:::
of

::::
each

::::::
along

::::
with

::::::::::
suggestions

:::
for

:::::::::
algorithm

::::::::
selection

::::
may

:::
be

::::::
found

::
in

::::
[41];

:::::::
further

:::::::::
discussion

:::::
may

::
be

:::::
found

::
in

::::
[42]

:
.

Module enrichment

Over-Representation Enrichment analyses for the gene sets of each detected module

was performed using hypergeometric testing. This test is equivalent to the one-tailed

Fisher’s exact test, which assesses the probability of drawing k elements belonging

to a set of K, by drawing n elements out of a population N .

It is widely used as a gene set enrichment tool for gene clustering methods, where

the genes in the cluster (or module) form the set of n elements drawn from the N

population (usually, the whole set of measured genes). The genes that belong to

a given pathway or biological function gene set represent K. Finally, the members

of the cluster that belong to the pathway or biological function are represented by k.

The testing was performed using as implemented in the HTSanalyzer package

[43]. The significance threshold for enrichment was set to be a Benjamini-Hochberg

adjusted p− value < 0.05. For the sake of simplicity in the analysis, it was decided

that the list of pathways used for the enrichment analyses would consist of the

10 pathways used to construct networks 1 and 2, plus two additional pathways

”Sphingolipid signaling pathway”, and ”Insulin signaling pathway” that were not

originally used for the construction of any network.
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Topological network comparison

The networks were compared in terms of the number of nodes, edges and connected

components that composed them. The degree distribution of each network was also

obtained. Finally, the similarity of node sets and edge sets of the networks were

compared using the Jaccard index.

Jaccard index

The Jaccard index is a measure of similarity between sets. It considers the sizes of

the intersection and union of two sets A and B, as follows:

J = |A∩B|
|A∪B|

Modular structure comparison

Evaluation of modular structures

The modularity score Q [28] was calculated as implemented in the igraph package

for R. The topological measures of embeddedness [29] and modular degree [30] were

implemented following their descriptions in the original references, using the igraph

package for R.

Networks with identical node sets

The modular structures of networks composed of identical node sets were compared

using the modularity comparison methods implemented in Igraph. These included

the Variation of Information [19], Normalized Mutual Information [20], split-join

distance [22], and (adjusted) Rand index [23, 24].

Networks with non-identical node sets

For a pair of networks G1 and G2, with a modular partition M1 and M2, we calculate

a similarity matrix SimMatrix. For each pair of Mi in G1 and Mj in G2, each value

SimMatrix(i, j) = Similarity(Mi,Mj).

In this work, the measure of similarity will be the Jaccard index.

We define a Similarity Score in terms of the similarity matrix for each module Mi

in G1 such that

SimScore(Mi) =
q∑

j=1

J(Mi,Mj)
|(Mi∩Mj)6=∅| ,

with Mi = 0 if |(Mi ∩Mj) 6= ∅| = 0.

Furthermore, we then define a a global Similarity Score as
k∑

i=1

SimScore(Mi)

k :::::::::::::::::

1
k

k∑
i=1

SimScore(Mi).

Functional comparison

Network functional similarity

Consider FunctionsG to be the set of all biological functions associated to each

module of a network G. Functional similarity of two networks is to be calculated as

FunctionalSimilarity = J(FunctionsG1
, FunctionsG2

)
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Functional Similarity of Modules

Consider Functionsi to be the set of biological functions associated to each module

Mi in a network G1, and Functionsj to be the set of biological functions associated

to each module Mj in a network G2. A Functional Similarity Matrix is defined such

that FuncSimMatrix(i, j) = J(Functionsi, Functionsj)

Number of modules associated to a given biological function

Consider FunctionsG1 and FunctionsG2 to be the set of functions associated

through enrichment to G1 and G2 respectively. Let Functionsboth = FunctionsG1∩
FunctionsG2 . Let E1 and E2 be k -dimensional vectors where each element k of E1

and E2 is the number of modules in G1 or G2 to which Functionsbothk
is associated.

An Euclidian distance between E1 and E2 can be calculated.
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this manuscript.

References
1. Ma’ayan, A.: Introduction to network analysis in systems biology. Science signaling 4, 5 (2011).

doi:10.1126/scisignal.2001965
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Figures

Figure 1 Methodological pipeline for the comparison of modular structures in biological networks
from a topological and functional perspective.
Network visualizations. Panel A, Main Network. Panel B, Alternative Network. Panel C, Mixed Network. Panel

D, Rewired Network.

Figure 2
:::::::::::
Methodological

::::::
pipeline

::
for

:::
the

:::::::::
comparison

:
of
:::::::

modular
:::::::
structures

::
in
:::::::
biological

:::::::
networks

:::
from

::
a
::::::::
topological

:::
and

::::::::
functional

:::::::::
perspective.

Figure 3 Degree frequency for the four networks analyzed in this work.

Figure 4 Empirical cumulative density functions (ecdf) of modular structure descriptors based on
topological features, for the Main and Rewired networks. Panel A) ecdf of module size. Panel B)
ecdf of node embeddedness (see [29]). Panel C) ecdf of the (tangent of the phi argument of the)
modular degree, as defined in [30] )
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Additional file 2 — Table comparing the partitions of the Main network generated by different algorithms, using

Adjusted Mutual Information

Additional file 3 — Rdata file containing networks, modular structures and enrichment results


