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S1 Portraits and Network Portrait Divergences for weighted
networks

The portrait matrix B (Eq. (2)) is most naturally defined for unweighted networks

since the path lengths for unweighted networks count the number of edges traversed

along the path to get from one node to another. Since the number of edges is always

integer-valued, these lengths can be used to define the rows of B. For weighted

networks, on the other hand, path lengths are generally computed by summing edge

weights along a path and will generally be continuous rather than integer-valued.

To generalize the portrait to weighted networks requires (i) using an algorithm

for finding shortest paths accounting for edge weights (here we will use Dijkstra’s

algorithm [1]), and (ii) defining an appropriate aggregation strategy to group short-

est paths by length to form the rows of B. The algorithm for finding shortest paths

defines the complexity of computing the portrait: The single-source Dijkstra’s algo-

rithm with a Fibonacci heap runs in O(M+N logN) time [2] for a graph of |V | = N

nodes and |E| = M edges. This is more costly than the single-source Breadth-First

Search algorithm we use for unweighted graphs, which runs in O(M + N) time.

Computing B requires all pairs of shortest paths, therefore the total complexity for

computing a weighted portrait is O(MN + N2 logN). This again is more costly

than the total complexity for the unweighted portrait, O(MN + N2) , but this

is unavoidable as finding minimum-cost paths is generically more computationally

intensive than finding minimum-length paths.

The simplest choice for aggregating shortest paths by length is to introduce a

binning strategy for the continuous path lengths. Let d0 = 0 < d1 < · · · < db+1 =

Lmax define a set of b intervals or bins, where Lmax is the length of the longest

shortest path. Then the weighted portrait B can be defined such that Bi,k ≡ the

number of nodes with k nodes at distances di ≤ ` < di+1. That is, the i-th row of the

weighted portrait accounts for all shortest paths with lengths falling inside the i-th

bin [di, di+1). (We also take the last bin to be inclusive on both sides, [db, Lmax]).

To compute B using a binning requires determining the b + 1 bin edges. Here

we consider a simple, adaptive binning based on quantiles of the shortest path

distribution, but a researcher is free to adopt a different binning strategy as needed.

Let L(G) = {`ij | i, j ∈ V ∧ `ij <∞} be the set of all unique shortest path lengths

between connected pairs of nodes in graph G. We then define our binning to be the

b contiguous intervals that partition L into subsets of (approximately) equal size.

Taking b = 100, for example, ensures that each bin contains approximately 1% of

the shortest path lengths. The number of bins b can be chosen by the researcher to
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Figure S1 A weighted network and its portrait. (A) The network of developers contributing to
IBM projects on GitHub. This is the giant connected component of the union of all graphs shown
in Fig. 5A. The weight on edge (i, j) represents the number of source files edited in common by
developers i and j. Node size is proportional to degree; node color is proportional to betweenness
centrality. (B) The cumulative distribution of shortest path lengths ` computed using Dijkstra’s
algorithm with reciprocal edge weights. (C) The weighted network portrait. The vertical marks in
panel B denote the path length binning used in C.

suit her needs, or automatically using any of a number of histogram binning rules

such as Freedman-Diaconis [3] or Sturges’ Rule [4].

Figure S1 shows the portrait for a weighted network, in this case taken from the

IBM developer collaboration network. Edge (i, j) in this network has associated non-

negative edge weight wij = the number of files edited in common by developers i

and j. The network is the union of the networks shown in Fig. 5A; we draw the giant

connected component of this network in Fig. S1A. For this network, we consider

shortest paths found using Dijkstra’s algorithm with reciprocal edge weights, i.e., the

“length” of a path (i = i0, i1, i2, . . . , in+1 = j) is `ij =
∑n

t=0 w
−1
it,it+1

, as larger edge

weights define more closely related developers. However, this choice is not necessary

in general. The cumulative distribution of shortest path lengths, which we computed

on all components of the network, is shown in Fig. S1B. Lastly, Fig. S1C shows the

portrait B for this network. For illustration, we draw the vertical positions of the

rows in this matrix using the bin edges. These bin edges are highlighted on the

cumulative distribution shown in Fig. S1B.

With a new definition for B now in place for weighted networks, the Network

Portrait Divergence can be computed exactly as before (Definition 3.1). However,

to compare portraits for two graphs G and G′, it is important for the path length

binning to be the same for both. We do this here by computing b bins as quantiles

of L = L(G) ∪ L(G′) and then compute B(G) and B(G′) as before. This ensures

the rows of B and B′ are compatible in the distributions used within Definition 3.1.
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