
Appendix
A Copula definition and computation

As stated in the main document, the copula of random variables (X1, ..., Xd)

corresponds to the joint cumulative distribution function (CDF) C : [0, 1]d →
[0, 1] of the uniformly distributed marginals (U1, ..., Ud). This means, that we

first need to find the uniform multivariate distribution of the marginals. It

is common practice to use the normalised ranked data, which corresponds to

pseudo-observations defined as follows (see pobs function in R[1]):

”Given n realisations xi = (xi1, ..., xid)
T , i ∈ {i, ..., n} of a random vector X,

the pseudo-observations are defined via uij = rij/(n+ 1) for i ∈ {1, ..., n} and
j ∈ {1, ..., d}, where rij denotes the rank of xij among all xkj , k ∈ {1, ..., n}.
This procedure ensures that the variates fall inside the open unit hypercube.”

In order to make this research useful to the reader, we include below the

algorithm used in this process for variables xt and s:

l i b r a r y ( VineCopula )

#The pseudo−obs e rva t i on s are cons t ruc ted as f o l l ow s

s e t . seed (500)

u <− pobs ( as . matrix ( cbind ( x t , s ) ) )

#Computation o f the copula

se l ec tedCopu la <− BiCopSelect (u [ , 1 ] , u [ , 2 ] , f am i l y s e t=NA)

The output of this is the family of the copula with the estimated parameters

through maximum likelihood. For 2007 we obtained:

B iva r i a t e copula : Surv iva l BB1 ( par = 0 .13 , par2 = 1 .02 ,

tau = 0 . 08 )

where BB1 refers to the Clayton-Gumbel family, and survival is its rotation

version by 180 degrees. We took the initiative to fit the data to the BB1 function

instead of its survival counterpart, since this one is better documented. After

implementation, we found that the correlation between the pij from the BB1

copula and its survival counterpart was bigger than 0.999. Hence the choice does

not affect the results. BB1 functions are part of Archimedean copulas defined

as follows (the following section is taken from [1]):

C(u1, u2) = φ[−1](φ(u1) + φ(u2)) (1)

where φ : [0, 1]→ [0,∞] is a continuous strictly decreasing convex function such

that φ(1) = 0 and φ[−1] is the pseudo-inverse

φ[−1](t) =

φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) ≤ t ≤ ∞,

[1]https://www.rdocumentation.org/packages/VineCopula/versions/2.2.0/topics/pobs
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where φ is the generator function of the copula C.

The generator function for the BB1 is given by

φ(t) = (t−θ − 1)δ, θ > 0, δ ≥ 1. (2)

The parameter τ obtained from the fitting (see result from code) can be deduced

from θ and δ as follows: τ = 1 − 2/(δ(θ + 2)). The BB1 copulas fitted for

the 2007 and 2014 data gave rise to the following parameters: θ2007 = 0.028,

δ2007 = 1.069, θ2014 = 0.013, δ2014 = 1.061.

B Percolation using copula for e−t and s

In the following subsections we look at the effect of constructing the network

for the set of nodes V given by the LSOAs, but using different weights for the

links.

In this section we examine the effect of choosing a different function for time

instead of 1/t. Within transport modelling and spatial interaction models, the

cost function is many times defined as either 1/tβ or as e−βt. Let us therefore

construct the copula using x′t = e−t instead of 1/t.

Repeating the same steps as explained in the methodology, we obtain as the

best copula fit, the same copula as for the case where we used x′t = 1/t, see

Fig. 1.

Figure 1. Copula for e−t and s for London 2007. We see that this is the same

as for 1/t and s in Fig.4 of the article

It should not be surprising that the results are the same for the copula

constructed using the two functions 1/t and e−t. The copula is modelling the

dependencies between the industrial similarities of the LSOAs and how fast one

can get from one to the other. Specifically, we are looking for pairs of LSOAs that

have a good connectivity in terms of public transport, and that have a similar
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ecosystem of industries. A shorter time t means a higher connectivity, and a

higher s means high similarity, hence in order to have both variables reflecting

a strong weight when both are high, etc, we need to transform t into a new

variable x′t = f(t), so that a high x′t corresponds to a strong connectivity. It is

important to remark, that the two functions, 1/t and e−t, keep the ranks of the

transformed variables in a similar way (they keep the positive sign and the order

of observations). Therefore, since the copula function uses the normalised ranks

of the pairs of variable values t and s, rather than the raw values themselves

(see how the pseudo-observations are generated in section A), the way time

distances are transformed in our case (through 1/t or through e−t) does not

impact the results of the Copula and the clusters produced as a result.

C Percolation using only similarity

Let us now explore what would happen if we were to cluster the LSOAs according

to their similarity only. In this case, we only consider the variable s for the

percolation process.

Figure 2. Geoindustrial clusters in 2007 and 2014 using only similarity s.
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The Fig. 2 shows that different clusters are obtained for the different years,

nevertheless, the clusters are composed of units that seem to be spread all over

London, and hence do not look anything like geographical clusters.

D Percolation using only time

In this section, the links of the network are only defined by the different functions

for the travel time. The travel time network was constructed using the timetables

for May 2016, and we are using this network for 2007 and 2014, hence we only

need to investigate the clusters for one year to illustrate how it works. Note

though, that given that the cluster size is defined according to the number of

firms inside each cluster, a possible variation in the colours might exist between

the two years. This is however not relevant for comparison purposes with other

methodologies.

Results for t, 1/t and e−t

Running the percolation process on the network defined by the travel time

only, t, 1/t or e−t, gives rise to clusters that correspond to accessible zones at

different time scales, see Figs. 3

Figure 3. Geoindustrial clusters using only time 1/t.

Overall, this exercise shows similarity or proximity given by time alone lead

to results that are not satisfactory. The copula captures both aspects of the

urban system. Of course further refinement can be obtained by using a more

adequate measure of similarity or commuting flows.
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E Diversity and concentration of firms

Diversity defined by Shannon’s entropy at the level of clusters (Fig.4) recalls

the general pattern of Fig.3 in the article (where SEI is computed at the level

of LSOAs) whereby central London, at the exception of Temple, appears highly

diverse in terms of industries represented by business units. The aggregation at

cluster level smooths the variations in the West, but it highlights the presence

of high diversity clusters like Croydon or the City of London: i.e. clusters which

are made of close LSOA with a similar mix of diverse business units.

Figure 4. Shannon’s entropy of the clusters defined at a specific threshold p

for the copula of 1/t and s, London 2007.

Using the HHI index of specialisation at the level of clusters, we mostly

single out the small and specific cluster of Temple Fig.5, very specialised in

law activities. Other specialised clusters tend to be located in the periphery of

London.
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Figure 5. Hirschman Herfindahl’s index for the clusters defined at a specific

threshold p for the copula of 1/t and s, London 2007.
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