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Constraints on the Infection Probabilities

To ensure that the fraction of infected individuals Ii[k] does not exceed one at every time k, we have

added the second constraint in the LASSO (7). Indeed, the second constraint in the LASSO (7)

ensures that Ii[k] ≤ 1 at every time k, as shown by Lemma 1, whose proof is inspired by [1].

Lemma 1. Suppose that Ii[1] ≥ 0, Ri[1] ≥ 0 and Ii[1]+Ri[1] ≤ 1 holds for every node i. Furthermore,

assume that the curing probabilities δi satisfy 0 ≤ δi ≤ 1 and the infection probabilities βij ≥ 0 satisfy

N∑
j=1

βij ≤ 1. (10)

Then, it holds that Ii[k] ≥ 0, Ri[k] ≥ 0 and Ii[k] +Ri[k] ≤ 1 at every time k ∈ N for every node i.

Proof. We prove Lemma 1 by induction. Suppose that at time k for every node i it holds that

Ii[k] ≥ 0 (11)

and

Ri[k] ≥ 0 (12)

and

Ii[k] +Ri[k] ≤ 1. (13)

By assumption, it holds that 0 ≤ δi ≤ 1 and βij ≥ 0. Thus, we obtain from the SIR governing

equations (3) and (13) yield that both Ii[k+ 1] and Ri[k+ 1] equal a sum of positive addends, which

implies that

Ii[k + 1] ≥ 0 (14)

and

Ri[k + 1] ≥ 0. (15)
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Furthermore, we obtain for every node i that

Ii[k + 1] +Ri[k + 1] = Ii[k] +Ri[k] + (1− Ii[k]−Ri[k])
N∑
j=1

βijIj [k]. (16)

From (11), (12) and (13), we obtain that Ii[k]+Ri[k] ∈ [0, 1]. Since (12) and (13) imply that Ii[k] ≤ 1,

it holds that

N∑
j=1

βijIj [k] ≤
N∑
j=1

βij ≤ 1. (17)

Thus, Ii[k + 1] + Ri[k + 1] ≤ 1, since the right side of (16) is a convex combination of 1 and∑N
j=1 βijIj [k] ∈ [0, 1].

Details of NIPA

Algorithm 1 describes the NIPA prediction method in pseudocode1. In line 4, the Matlab command

smoothdata is called to remove erratic fluctuations of the raw data Irep,i[k]. We denote the N × 1

infection state vector by I[k] = (I1[k], ..., IN [k])T at any time k. The loop starting in line 8 iterates over

all candidate values of the curing probability δi which are in the set Ω. Algorithm 1 calls the network

inference method, which is stated in pseudocode by Algorithm 2. For a fixed curing probability δi,

the network inference in line 12 returns an estimate for the infection probabilities βi1 (δi), ..., βiN (δi).

Furthermore, the network inference returns the mean squared error MSE (δi), which corresponds to

the first term in the objective of (7). The smaller the mean squared error MSE (δi), the better the fit of

the SIR model (3) to the data Ii[1], ..., Ii[n]. In line 14, the final estimate δ̂i for the curing probability

is obtained as the minimiser of the mean squared error MSE (δi). The estimate δ̂i determines the final

estimates β̂i1, ..., β̂iN for the infection probabilities in line 15. From line 17 to line 27, the SIR model

(3) is iterated, which results in the predicted fraction of infections Îi[n + 1], ..., Îi[n + npred] for all

cities i.

To determine the regularisation parameter ρi in the LASSO (7), we consider 100 candidate values,

specified by the set Θi = {ρmin,i, ..., ρmax,i}. In line 4 of Algorithm 2, the maximum value is set to

ρmax,i = 2‖F Ti Vi‖∞. If ρi > ρmax,i, then [2] the solution to the LASSO (7) is βij = 0 for all cities j. For

every value of the regularisation parameter ρi ∈ Θi, we compute the mean squared error MSE (δi, ρi)

by 3-fold cross–validation [3]. For every fold, the rows of the matrix Fi and the vector Vi are divided

into a training set Fi,train, Vi,train and a validation set Fi,val, Vi,val. We compute the solution βi1,

..., βiN to the LASSO (7) on the training set of every fold Fi,train, Vi,train. The mean squared error

MSE (δi, ρi) then equals ∥∥∥∥∥∥∥∥Vi,val − Fi,val


βi1
...

βiN


∥∥∥∥∥∥∥∥

2

2

,

averaged over all folds. Finally, we set the regularisation parameter ρi to the minimiser of MSE (δi, ρi).

The final estimate βi1(δi), ..., βiN (δi) for the infection probabilities is obtained by solving the LASSO (7)

1The Matlab code is available upon request to the authors.
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Algorithm 1 Network Inference-based Prediction Algorithm (NIPA)

1: Input: reported fraction of infections Irep,i[1], ..., Irep,i[n] for all cities i; prediction time npred

2: Output: predicted fraction of infections Îi[n+ 1], ..., Îi[n+ npred] for all cities i

Step 1 – Data preprocessing

3: Irep,1[17]← (Irep,1[16] + Irep,1[18])/2

4: Ii[1], ..., Ii[n]← smoothdata(Irep,i[1], ..., Irep,i[n]) for all i = 1, ..., N

5: I[k]← (I1[k], ..., IN [k])T for all k = 1, ..., n

Step 2 – Network inference

6: for i = 1, ..., N do

7: Ri[1]← 0

8: for δi ∈ Ω do

9: Ri[k]← Ri[k − 1] + δiIi[k − 1] for all k = 2, ..., n

10: Si[k]← 1− Ii[k]−Ri[k] for all k = 1, ..., n

11: vi[k]← (Si[k], Ii[k],Ri[k])T for all k = 1, ..., n

12: (βi1 (δi) , ..., βiN (δi) ,MSE (δi))← Network inference(δi, vi[1], ..., vi[n], I[1], ..., I[n])

13: end for

14: δ̂i ← argmin
δi∈Ω

MSE (δi)

15: (β̂i1, ..., β̂iN )← βi1(δ̂i), ..., βiN (δ̂i)

16: end for

Step 3 – Iterating SIR model

17: for i = 1, ..., N do

18: Îi[n]← Ii[n]

19: R̂i[1]← 0

20: R̂i[k]← R̂i[k − 1] + δ̂iIi[k − 1] for all k = 2, ..., n

21: end for

22: for k = n+ 1, ..., n+ npred do

23: for i = 1, ..., N do

24: Îi[k]← (1− δ̂i)Îi[k − 1] + (1− Îi[k − 1]− R̂i[k − 1])
∑N

j=1 β̂ij Îj [k − 1]

25: R̂i[k]← R̂i[k − 1] + δ̂iÎi[k − 1]

26: end for

27: end for
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on the whole matrix Fi and vector Vi. To solve the LASSO (7) numerically, we make use of the Matlab

command quadprog.

Algorithm 2 Network inference

1: Input: curing probability δi; viral state vi[k] for k = 1, ..., n; infection state vector I[k] for

k = 1, ..., n

2: Output: infection probability estimates βi1(δi), ..., βiN (δi); mean squared error MSE(δi)

3: Compute Vi and Fi by (5) and (6)

4: ρmax,i ← 2‖F Ti Vi‖∞
5: ρmin,i ← 10−4ρmax,i

6: Θi ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: for ρi ∈ Θi do

8: estimate MSE(δi, ρi) by 3-fold cross–validation on Fi, Vi and solving (7) on the respective

training set

9: end for

10: ρopt,i ← argmin
ρi∈Θi

MSE (δi, ρi)

11: (βi1(δi), ..., βiN (δi))← the solution to (7) on the whole data set Fi, Vi for ρi = ρopt,i

12: MSE(δi)← MSE(δi, ρopt,i)

Evaluation of the Prediction Accuracy of NIPA

We generate viral state sequences vi[1], ...,vi[n] according to the SIR model (3) to evaluate the pre-

diction accuracy of NIPA. We set the number of nodes to N = 16 and the number of observations to

n = 20. The curing probabilities δi are set to a random number, uniformly distributed in [0.5, 1]. We

perform two steps to generate the contact network B. First, we generate an N ×N adjacency matrix

A with zero-one elements aij ∈ {0, 1} based on the (directed) Erdős-Rényi graph model [4]. For any

two nodes i 6= j, we set aij = 1 with link probability p = 0.3. If the resulting graph is not connected,

then we repeat the random graph generation. We set the diagonal elements to aii = 1 for every node

i. Second, we set the elements of the matrix B to βij = 0 if aij = 0. If aij = 1, then we set the

infection probability βij to a random number, uniformly distributed in [0.1, 0.2].

Fig 1 shows that NIPA accurately predicts the infection state Ii[k] for every node i at every time

k ≥ n + 1. We emphasise that the true curing rates δi are not in the set Ω (with probability one).

Thus, the estimates δ̂i of NIPA cannot exactly equal the true curing rates δi.

We denote the estimated contact network with the elements β̂ij by B̂. To assess whether the

estimated matrix B̂ is similar to the true matrix B, we calculate the area under the receiver-operating-

characteristic curve (AUC) [5]. The AUC lies between 0 and 1, and an AUC of 1/2 is equivalent to

tossing a coin to determine the presence (β̂ij = 1) or absence (β̂ij = 0) of a link. If the inferred

network B̂ equals the true network B, then the AUC equals 1. The AUC of the estimate B̂ of Fig 1

equals merely 0.53. Hence, the topology of the estimate B̂ and the true matrix B have virtually no

resemblance, which is in agreement with [6].

We perform further simulations to evaluate the robustness of NIPA against model errors wi[k]. We
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Figure 1: NIPA prediction for an exact SIR epidemic. The true cumulative infection state

Ics,i[k] and the prediction of NIPA. The infection state Ii[k] has been generated by the SIR model

(3). For clarity, only the infection states Ii[k] of five of the N = 16 nodes are depicted.

generate viral state sequences vi[1], ...,vi[n] similarly as in Fig 1, but we replace the infection state

Ii[k] for every node i at every time k by

Ii[k]← Ii[k] + wi[k]. (18)

Here, wi[k] denotes additive white Gaussian noise with zero mean and standard deviation σ = 0.002.

The model errors wi[k] and wj [k] are stochastically independent for all nodes i 6= j. If the infection

state Ii[k] resulting from (18) is negative, we set Ii[k] ← |Ii[k]|. Fig 2 demonstrates of the intensity

of the model error wi[k].

Fig 3 demonstrates the NIPA prediction accuracy for the SIR model with model errors wi[k]. For

times k that are considerably greater than the observation time n, the prediction of the cumulative

infection state Ics,i[k] diverges from true infection state. However, the predictions of NIPA are accurate

until approximately k ≈ n+ 5, which is valuable for short-term disease counter-measures.
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Figure 2: SIR with and without model errors. The SIR infection state I1[k] of one node with

and without normally distributed model errors wi[k] with standard deviation σ = 0.002.
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Figure 3: NIPA prediction for an SIR epidemic with model errors. The true cumulative

infection state Ics,i[k] and the prediction of NIPA. The infection state Ii[k] has been generated by the

SIR model (3) plus normally distributed model errors wi[k] with standard deviation σ = 0.002. For

clarity, only the infection states Ii[k] of five of the N = 16 nodes are depicted.
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Table 1: The Mean Absolute Percentage Error for subfigure 2d for the different cities.

City 1 day 2 days 3 days 4 days

NIPA Logistic NIPA Logistic NIPA Logistic NIPA Logistic

Wuhan 0.0332 0.0096 0.0634 0.0193 0.0767 0.0497 0.1049 0.0701

Huanggang 0.0115 0.0354 0.0342 0.0424 0.0598 0.0525 0.0969 0.0576

Jingzhou 0.0121 0.0242 0.0224 0.0425 0.0340 0.0631 0.0409 0.0915

Xiangyang 0.0223 0.0485 0.0587 0.0507 0.1019 0.0530 0.1459 0.0598

Xiaogan 0.0049 0.0066 0.0177 0.0036 0.0281 0.0195 0.0565 0.0214

Xiantao 0.0170 0.0090 0.0431 0.0145 0.0636 0.0305 0.0952 0.0395

Yichang 0.0368 0.0389 0.0610 0.0596 0.1026 0.0709 0.1513 0.0806

Shiyan 0.0214 0.0483 0.0225 0.0699 0.0194 0.0938 0.0050 0.1025

Enshi 0.0320 0.0849 0.0667 0.1047 0.1042 0.1216 0.1659 0.1198

Jingmen 0.0298 0.0324 0.0358 0.0549 0.0264 0.0694 0.0057 0.0677

Xianning 0.0097 0.0045 0.0394 0.0009 0.0508 0.0189 0.0741 0.0328

Huangshi 0.0019 0.0215 0.0102 0.0291 0.0304 0.0341 0.0491 0.0459

Suizhou 0.0155 0.0333 0.0305 0.0489 0.0375 0.0739 0.0573 0.0906

Ezhou 0.0054 0.0457 0.0339 0.0460 0.0612 0.0509 0.0866 0.0604

Tianmen 0.0062 0.1392 0.0467 0.2145 0.0005 0.2151 0.0561 0.2091

Qianjiang 0.0494 0.0126 0.0516 0.0163 0.0861 0.0168 0.1092 0.0304
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