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Appendix

1 Distributions of motifs

1.1 Computing the distribution probabilities of motifs

Let us define the multi-set S to contain all the trajectories present in the data. For

example, given a trajectory i = {A → B → A → B} appearing ni times in the data,

then i appears ni times in S. For each trajectory i ∈ S, we also define the multi-set

Sk(i) to contain all the sub-trajectories of i with length k. For example, given a

trajectory i = {A → B → A → B}, the multi-set S1(i) = {A → B, A → B, B →

A}. Note that the sub-trajectory A → B appears twice in i, i.e., m(A → B, i) = 2,

while B → A appears only once, i.e., m(B → A, i) = 1. In general, we have that

|Sk(i)| = max(li − k + 1, 0) where li is the length of trajectory i. In other words, a

trajectories of length li can be split into li − k + 1 sub-string of length k if k ≤ li.

This can also be expressed as
∑

p∈S̃k(i) m(p, i) = max(li − k + 1, 0) where S̃k(i) is

the set of sub-trajectories of length k extracted from i.

To compute the probability to observe motifs of type I, i.e., X → Y → X or type

II, i.e., X → Y → Z, we have note that these are all the possible (sub-)trajectories

of length two. We call Sk the multi-set containing all the sub-trajectory of length

k. This means that S2 contains all the motifs of type I and type II. Then, we define

the probability to observe a motif p ∈ S2

P (emp)(p) =
1

|S|

∑

i∈S

q(p|i) =
1

|S|

∑

i∈S

m(p, i)

max(li − 1, 1)
(1)

Note that P (emp) is is always equal or greater than zero and
∑

p∈S̃2
P (emp)(p) +

|S1|/|S| = 1 where S̃2 is the set containing the sub-trajectory of length two. This

last relation follows from the fact that any trajectory i ∈ S can be spitted in li − 1

sub-trajectories of length 2 when li ≥ 2. Hence,

∑

p∈S̃2

q(p|i) =







1 ∀i : li ≥ 2

0 ∀i : otherwise
(2)

Using Eq.2, we can show that

∑

p∈S̃2

P (emp)(p) =
1

|S|

∑

i∈S̃

ni

∑

p∈S̃2

q(p|i) =
1

|S|

∑

k=2

|Sk| =⇒
∑

p∈S̃2

P (emp)(p)+
|S1|

|S|
= 1

(3)

For computing the probability distribution in the first- and second-order network,

i.e., P (1) and P (2), we rely on the Pathpy implementation. Precisely, we use the

function path likelihood that returns the probability to observe a path/transition.

For more details, see (??).
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1.2 Odds ratio

We split the set S̃2 in two disjoint sets S̃I
2 and S̃II

2 ,respectively containing motifs of

type I and type II. The empirical odds ratio to observe motifs of type I compared

to motifs of type II is given by

ORI,II =

∑

p∈S̃I

2
P (emp)(p)

∑

p∈S̃II

2
P (emp)(p)

(4)

and we find from our data that ORI,II ∼ 1.7. This means that motifs of type I

are almost twice as frequent as motifs of type II. When computing the odds ratio

ORI,II using P (1) we get ∼ 0.14 that is of an order magnitude different compared

to the empirical one. While, the the odds ratio ORI,II coming from P (2) is ∼ 1.4

that is quite close to the empirical one.

1.3 Computing and visualizing the Kullback-Leibler divergence

Since we use the P (emp), P (1), P (2) to compute the Kullback-Leibler (KL) divergence

for motifs of length 2, we normalize this probability to one. In other words, for

P (emp)(p), we write

P (emp)(p) → P (emp)(p)/
∑

p∈S̃2

P (emp)(p) (5)

and we renormalise in similar way P (1) and P (2). The KL-divergence between P (emp)

and P (1) is 1.51, while between P (emp) and P (2) is 0.10. Hence, the first-order model

has KL-divergence more than 10 times larger compared to the second-order model.

In Fig. 1, we plot P (emp), P (1), and P (2) respectively in green dots, blue + and

orange ×. The order on the x-axis is created by sorting the motifs from the most

to least probable with respect to the empirical data. We see that the first-order

network consistently underestimates motifs that are more probable. Instead, the

second-order network produces probabilities quite close to the empirical ones.

To compute the Kullback-Leibler divergence only for motifs of type I (type

II), we have to renormalise P (emp), P (1), and P (2). In other words, P (emp)(p) →

P (emp)(p)/
∑

p∈S̃I

2
P (emp)(p), and similarly for P (1) and P (2). In Fig. 2(a) and (b),

we compare the probability distribution for the motifs of type I and type II, respec-

tively. Again, we have P (emp), P (1), and P (2) respectively in green dots, blue + and

orange ×. The order on the x-axis is created by sorting the motifs from the most to

least probable with respect to the empirical data. From Fig. 2(a) that depict motifs

of type I, it is evident that the first order network underestimates the probabilities

of these motifs. While, in Fig. 2(b), the situation is reversed.

2 Trajectories at city level
In MEDLINE, we have 3 740 187 individual scientist trajectories across 12 980 cities

between 1990 and 2009.. Among these, 884 251 trajectories have length 1 or higher.

Specifically, 11 % of all the trajectories are of length 1, meaning that we observe

half of the scientists changing city only once. While, the 12 % of the trajectories

are longer (i.e., 455 127). The most frequent trajectories of length one are between
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Figure 1 Distribution probabilities for all the motifs of type I and II. we plot P
(emp), P

(1), and
P

(2) respectively in green dots, blue + and orange ×. The order on the x-axis is created by
sorting the motifs from the most to least probable with respect to the empirical data. On the
y-axis, we report their respective probabilities.

Boston (MA, USA) and Cambridge (MA, USA), London (UK) and the Oxfordshire

(UK), and Tokyo (Japan) and Kanagawa (Japan).

While the most frequent trajectories of length 2 are between Boston (MA, USA),

Cambridge (MA, USA) and Boston (MA, USA), Stanford, (CA, USA), Palo Alto,

(CA, USA), and Stanford, (CA, USA)[1], London (UK) Oxfordshire (UK), London

(UK), Tokyo (Japan), Kanagawa (Japan), Tokyo (Japan).

3 Trajectories at global affiliation level (MAG)
In the MAG, we have over 14 million disambiguated scientist among more than

19000 affiliations. Among these, 2 591 784 trajectories have length 1 or higher be-

tween 18 522. Specifically, 1 196 158 are of length 1, meaning that we observe half of

the scientists changing affiliation only once. While, 1 395 626 of the trajectories are

longer (e.g., 614 776 have length two). The most frequent trajectories of length one

are between University of California and University of California, Berkeley Uni-

versity of California and university of California Los Angeles, and University of

California and Davis, University of California. Note that University of California

is a university system composed of 10 different campuses and is not an unambigu-

[1]Note that the fact that we can distinguish between locations such as Stanford

and Paolo Alto only thanks to the fine grain resolution of MapAffil (?). Indeed, by

manually checking authors’ affiliation that MapAffil placing in Palo Alto, we find

that many companies such Xerox, Hewlett-Packard, Lockheed Martin, and many

biotech companies have laboratories in Paolo Alto.
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ously defined location or affiliation. When considering longer trajectories, we find

similar type of trajectories trough ambiguously defined research institutions. For

this reasons, we do not use the MAG data to analyze scientists’ career trajectories

at global level and use MEDLINE instead.
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Figure 2 Distribution probabilities for all the motifs of type I (a) and II (b). we plot P
(emp),

P
(1), and P

(2) respectively in green dots, blue + and orange ×. The order on the x-axis is
created by sorting the motifs from the most to least probable with respect to the empirical data.
On the y-axis, we report their respective probabilities.
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