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1 Definition of Katz and betweenness centrali-
ties

Katz centrality. Whereas PageRank centrality measures the importance of
a node by the time spent in the node by random walkers, the idea behind Katz
centrality is to count the number of paths linking a given vertex to other vertices
in the network. An attenuation parameter α ∈ (0, 1) is used to favor short paths
over longer ones. The number of paths of length k between i and j is then the
(i, j)-th element of Ak. Katz centrality is then defined by:

K(i) =

∞∑
k=1

∑
j

αk(Ak)i,j . (1)

In a directed graph, the formula above remains valid, but only counts directed
paths starting at i. A version of Katz centrality counting paths ending at i can
of course be defined using the term (Ak)j,i in (1).

When α is sufficiently small (meaning α < 1/ρ(A), where ρ(A) is the largest
eigenvalue of A), the Katz centrality vector can also be computed using:

K = (I − αA)−11Tn, (2)

where 1n = (1, . . . , 1).

Betweenness and closeness centrality. These two related centrality met-
rics rely on counting shortest paths passing through a given vertex. First, con-
sider a vertex u in an undirected connected network G = (V,E). For each v ∈ V ,
let du,v be the geodesic distance on V , ie. the length of a shortest path linking
u and v. The closeness of u is then defined as

C(u)−1 =
∑
v ̸=u

du,v, (3)

where the sum is in fact taken over all vertices v in the connected component of u.
Intuitively, a vertex with high closeness can reach other nodes using short paths.
Sometimes a normalized version of closeness centrality is considered, where each
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shortest-path distance is divided by the maximal length of a shortest path,
namely N − 1. In directed networks, one can consider separately an outgoing
and an ingoing closeness centrality.

A similar idea lies at the heart of betweenness centrality: for three given
vertices u ̸= v ̸= w ∈ V , let sp(u,w) be the number of shortest paths linking
u to w and let sp(u, v, w) ≤ sp(u,w) be the number of those paths that pass
through v. The betweenness centrality of v is then

B(v) =
∑

u,w∈V
u ̸=v ̸=w

sp(u, v, w)

sp(u,w)
. (4)

Exact computation of betweenness and closeness centrality can be challeng-
ing for large networks, since it relies on path enumeration and hence, to combi-
natorial explosion. Efficient methods have been developed [1] and implemented,
for instance in the networkit package [2].

2 Variance of simulated outbreak final sizes
In Table 1, we present the mean and standard deviation of the final outbreak
size of a temporal SIR outbreak started at a uniformly chosen node in the 2015
BDNI network. A fraction of nodes were removed according to their centrality
computed using different methods. As we mentioned in the main text, standard
deviations are quite low, with coefficients of variation uniformly below 5%, in-
dicating that most outbreaks follow a similar pattern, probably driven by the
existence of hubs.

Graph Method Mean outbreak size Standard deviation

Complete

Betweenness 11,045 217
Degree 11,524 221
Katz 13,906 253

PageRank 6,413 152
out-TempoRank 286 15

TempoRank 1,648 57

Reconstructed

Betweenness 24,633 367
Degree 23,857 361
Katz 23,231 359

PageRank 24,247 364
out-TempoRank 13,327 247

TempoRank 2,566 82

Table 1: Mean and standard deviation of the final outbreak size in 10,000 sim-
ulated outbreaks on the 2015 BDNI network, with 0.025% of nodes removed
according to decreasing centrality.
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3 Fraction of markets and assembly centres in
highly ranked nodes
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Figure 1: Proportion of markets and assembly centres in the highest-ranked
nodes of the 2014 complete BDNI network.

In the complete BDNI network, there are 1,168 markets and assembly centres
in the 2014 network (1,132 in the 2015 network). For n ≤ 5000, we selected the
n highest-ranked nodes according to the six centrality measures we considered
in the paper, and computed the proportion of all markets and assembly centres
that were present in those n nodes.

Four of the centrality measures considered (Betweenness centrality, degree
centrality, PageRank centrality and out-TempoRank centrality) are highly rank-
ing markets and assembly centres, with 50% of them consistently ranked in the
1,500 top-scoring nodes. The most effective centrality measure at identifying
markets and assembly centres is out-TempoRank, followed by PageRank cen-
trality. This hierarchy is reflected in the disintegration curves in the main text,
in which PageRank centrality was the best-performing static measure.

Interestingly, as far as TempoRank centrality is concerned, there is a con-
stant proportion of markets and assembly centres in the highest-ranked nodes.
This proportion is lower than any of the other centrality measures, yet targeted
removal manages to lower final outbreak sizes to a level that static centrality
measures can not attain.
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Figure 2: Mean outbreak size as a function of the fraction of removed nodes
in the 2015 complete BDNI network, with centralities computed using the 2014
(red) or 2015 (blue) movement data (log scale).

4 Comparison of measures computed on differ-
ent yearly networks

An important question is to ascertain the power of centrality measures computed
retrospectively to predict epidemic outcomes simulated on contemporaneous
data. As a benchmark, we compared the disintegration curves for centrality
measures computed on the 2014 network with the curves for centralities com-
puted on the 2015 network, all simulations being done using the 2015 movement
data. Results are shown in Fig. 2 for the complete network and Fig. 3 for the
reconstructed network.

Unsurprisingly, in both networks, the use of contemporaneous data improves
the speed of decrease of mean final size, but the curves remain qualitatively
similar, indicating that TempoRank and out-TempoRank scores are robust to
the changes occurring at small scales on a year-to-year basis.
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Figure 3: Mean outbreak size as a function of the fraction of removed nodes
in the 2015 reconstructed BDNI network, with centralities computed using the
2014 (red) or 2015 (blue) movement data (linear scale).
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5 Mean outbreak sizes as a function of epidemic
parameters

In order to assess whether the hierarchy of centrality measures obtained through
the percolation experiment described in the main text (Section 3.3) was robust
to different spreading parameters, we removed a fixed amount of nodes (0.5%
of active nodes in the 2014 network) from the 2015 complete BDNI network.
We then simulated outbreaks for different values of the per-contact infection
probability β and the per-node recovery rate γ. Results are shown in Fig. 4.
In all cases, we recover the hierarchy found in the main text (corresponding to
β = 0.5 and γ = 1).
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Figure 4: Mean outbreak size as a function of infection probability β. Facets
correspond to the recovery rate γ.

6 Mean outbreak size as a function of random
walk parameters

In Fig. 5 and 6, we present mean outbreak sizes, with 0.5% of nodes removed,
for all studied combinations of parameters q and d, corresponding to the exper-
iments described in Fig. 6 and 7 in the main text (which present the complete
curves only for the slices q = 0.1 and d = 0.15). We recover the same phenom-
ena already described in the main text, namely a strong effect for d, and a slight
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effect for q, which is more apparent for high d.
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Figure 5: Mean outbreak size as a function of teleportation d (linear scale).
Facets correspond to the laziness parameter q.
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Figure 6: Mean outbreak size as a function of laziness q (linear scale). Facets
correspond to the teleportation parameter d.
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