Testing biological network motif significance with exponential random graph models *Additional file 1*

Alex Stivala¹, Alessandro Lomi^{1,2}

¹Università della Svizzera italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland ²The University of Exeter Business School, Rennes Drive, Exteter EX4 4PU,United Kingdom alexander.stivala@usi.ch alessandro.lomi@usi.ch

Supplementary tables

Table S1: Parameter estimates for the Alon *E. coli* regulatory network, estimated using the "stepping" algorithm (Hummel et al, 2012) in the statnet ergm package (Handcock et al, 2008; Morris et al, 2008; Hunter et al, 2008; Handcock et al, 2016, 2021; Krivitsky et al, 2021). The decay parameter α for geometrically weighted dyad-wise shared partners (GWDSP) and geometrically weighted edge-wise shared partners (GWESP) OTP ("outgoing two path", that is, transitive shared partner) is set to log(2.0), equivalent to the default value $\lambda = 2.0$ for AltTwoPaths and AltKTrianglesT in the EstimNetDirected software.

Effect	Model 1	Model 2
Edges	$-3.113 (0.077)^{***}$	$-3.025 (0.066)^{***}$
GW in-degree ($\alpha = 2$)	$-3.954 (0.124)^{***}$	$-3.818(0.140)^{***}$
GW out-degree ($\alpha = 0$)	$1.588 \ (0.184)^{***}$	$1.578 \ (0.190)^{***}$
GWDSP OTP ($\alpha = 0.693$)	$-0.493 (0.077)^{***}$	$-0.502 (0.080)^{***}$
GWESP OTP ($\alpha = 0.693$)	$2.378 \ (0.201)^{***}$	$2.382 \ (0.193)^{***}$
Nodematch self		$-0.271 (0.086)^{**}$
AIC	5445.00	5426.00
BIC	5495.00	5487.00

*** p < 0.001; ** p < 0.01; * p < 0.05; p < 0.1.

Effect	Model 1	Model 2	Model 3
Arc	$\begin{array}{c} -10.578 \\ (-10.820, -10.335) \end{array}$	$\begin{array}{c} -10.080 \\ \scriptstyle (-10.331, -9.828) \end{array}$	$-10.093 \\ (-10.342, -9.844)$
Sink	$3.124 \\ (-3.407, 9.655)$	$3.039 \atop (-3.644, 9.721)$	$3.003 \\ (-3.637, 9.642)$
Source	$\underset{(-4.488,10.295)}{2.903}$	$\underset{(-6.715,9.917)}{1.601}$	$\underset{(-6.490,10.389)}{1.949}$
Reciprocity	—	—	-10.800 (-26.307, 4.707)
AltInStars	${0.347 \atop (-2.723, 3.416)}$	${0.427 \atop (-2.804, 3.658)}$	$0.336 \\ (-2.818, 3.490)$
AltOutStars	$2.860 \ (-0.278, 5.998)$	$2.585 \ (-0.515, 5.685)$	$\underset{(-0.537,5.811)}{2.637}$
AltTwoPathsT	—	$-0.110 \\ (-0.581, 0.360)$	-0.149 (-0.607,0.310)
AltKTrianglesT	$\underset{(0.315,2.139)}{1.227}$	$\frac{1.706}{(-0.773, 4.185)}$	$\begin{array}{c} 2.390 \\ (0.011, 4.770) \end{array}$

Table S2: Parameter estimates for the Alon yeast regulatory network, with the default $\lambda = 2$ for the "alternating" parameters.

Parameter estimates that are statistically significant at the 95% level are shown in bold. Model 3 is included for illustration, even though it shows poor convergence with respect to the Reciprocity parameter (t-ratio magnitude is greater than 0.3)

Table S3: Parameter estimates for the Alon yeast regulatory network, with self-edges included. The decay parameters λ are set to the best value found by grid search in the network without self-edges, as described in the main text.

Effect	Model 1	Model 2
Arc	$\begin{array}{c} -7.430 \\ (-7.606, -7.254) \end{array}$	$\frac{-7.521}{\scriptscriptstyle (-7.702,-7.340)}$
Loop	_	$\underset{(-3.650,7.091)}{1.720}$
AltInStars	-0.466 (-1.498,0.566)	-0.414 (-1.414,0.585)
AltOutStars ($\lambda = 4.5$)	$1.000 \\ (0.757, 1.243)$	$\begin{array}{c} 1.005 \\ (0.757, 1.252) \end{array}$
AltTwoPathsT ($\lambda = 1.5$)	-0.304 ($-0.675, 0.068$)	-0.294 (-0.672,0.084)
AltKTrianglesT ($\lambda = 1.5$)	$1.884 \\ (0.059, 3.709)$	$\underset{(0.031,3.704)}{1.868}$

Parameter estimates that are statistically significant at the 95% level are shown in bold.

Supplementary figures

Figure S1: Goodness-of-fit plots for (**a**) the Alon *E. coli* regulatory network Model 1 (Table 6 in the main text), and (**b**) the Alon yeast regulatory network Model 1 (Table 7 in the main text). The observed network statistics are plotted in red with the statistics of 100 simulated networks plotted as black boxplots, and blue on the histograms.

Figure S2: (a) Goodness-of-fit plots, and (b) triad census goodness-of-fit plot, for the Alon yeast regulatory network Model 2 (Table 7 in the main text). The observed network statistics are plotted in red with the statistics of 100 simulated networks plotted as black boxplots, and blue on the histograms.

Figure S3: (a) Goodness-of-fit plots, and (b) triad census goodness-of-fit plot, for the Alon yeast regulatory network Model 2, with default decay parameter value $\lambda = 2.0$ (Table S2). The observed network statistics are plotted in red with the statistics of 100 simulated networks plotted as black boxplots, and blue on the histograms.

Figure S4: Goodness-of-fit plots for the Alon *E. coli* regulatory network with self-edges (Models 3 and 4 in Table 6 in main text). (a) Model 3, with no Loop parameter, and (b) Model 4, with the Loop parameter included.

Figure S5: Goodness-of-fit plots for the Alon yeast regulatory regulatory network models with self-edges (Table S3). (a) Model 1, with no Loop parameter, and (b) Model 2, with the Loop parameter included.

Figure S6: Statnet goodness-of-fit plots for the Alon E. coli regulatory network, Model 1 (Table S1).

Figure S7: Statnet goodness-of-fit plots for the Alon E. coli regulatory network, Model 2 (Table S1).

References

- Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris, Martina (2008) statnet: Software tools for the representation, visualization, analysis and simulation of network data. J Stat Softw 24(1):1–11, URL http://www.jstatsoft.org/v24/i01
- Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, Bender-deMoll S, Morris M (2016) statnet: Software Tools for the Statistical Analysis of Network Data. The Statnet Project (http://www.statnet.org), URL CRAN.R-project.org/package=statnet, R package version 2016.9
- Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, Morris M (2021) ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks. The Statnet Project (https://statnet.org), URL https://CRAN.Rproject.org/package=ergm, R package version 4.1.2
- Hummel RM, Hunter DR, Handcock MS (2012) Improving simulation-based algorithms for fitting ERGMs. J Comput Graph Stat 21(4):920–939
- Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008) ergm: A package to fit, simulate and diagnose exponential-family models for networks. J Stat Softw 24(3):1–29, URL https://www.jstatsoft.org/v024/i03
- Krivitsky PN, Hunter DR, Morris M, Klumb C (2021) ergm 4.0: New features and improvements. arXiv preprint arXiv:210604997
- Morris M, Handcock M, Hunter D (2008) Specification of exponential-family random graph models: Terms and computational aspects. J Stat Softw 24(4):1–24, URL https://www.jstatsoft.org/v024/i04