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Map of Columbus, Ohio

Figure 1: Columbus Map. Snapshot taken from Google Maps.

1 Methods summary

Deepwalk

The popular and competitive [1] method Deepwalk [2] performs truncated random

walks on the graph. The method accepts parameters: walk length of the random walk
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Figure 2: Frequently mentioned regions.

and number of random walks from each node to perform truncated random walks.

Deepwalk then identifies the source and context nodes from the computed random

walks and learns the node embeddings using the skip-gram objective function [3].

The objective function minimizes the following negative log-likelihood function

minimizeϕ − logPr({vi−w, · · · , vi+w}\vi | ϕ(vi)) (1)

where Pr is the probability function, ϕ represents the embedding/representation of

the node, vi is the source node and vi−k is the context node and w is the size of the

context window.

The computation of the probability term in Equation 1 is not tractable due to

the normalization factor being computationally expensive. Hence, Deepwalk factor-

izes the above conditional probability using Hierarchical Softmax [4]. Hierarchical

Softmax constructs a binary tree where the leaf nodes are the nodes of the graph

(denoted by V ), and the probability of observing a context node vj given the repre-

sentation of source node ϕ(vi) is computed by the probability of reaching the node
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vj from the root of the binary tree given ϕ(vi). Mathematically,

Pr({vj | ϕ(vi)) =
∗log |V |∏

l=1

Pr(bl|ϕ(vi)) (2)

and

Pr(bl|ϕ(vi) = 1/(1 + exp−ϕ(vi)×Ψ(bl)) (3)

where bl is the node on the path from the root of the binary tree to vj and Ψ(bl) is

the representation of node bl.

LINE

LINE [5] learns node representations of the networks by preserving the first-order

and second-order proximity of the nodes. The first-order proximity constraint en-

sures that directly connected nodes’ representation is close to each other in the

embedding space. The second-order proximity constraint ensures that nodes with

similar contexts (or neighbors) have similar representations.

Formally, the first-order proximity is defined as follows

O1 = −
∑

(ui,lj)∈E

w(ui,lj) logP̂ (ui, lj) where P̂ (ui, lj) =
1

1 + exp(−ϕ(ui)ϕ(lj))
(4)

The second-order proximity is defined as follows

O2 = −
∑

(ui,lj)∈E

w(ui,lj) log
exp(ϕ(ui).ψ(lj))∑

l
′
j∈V, l

′
j ̸=lj

exp(ϕ(ui).ψ(l
′
j))

(5)

where E represents edges in the co-location network. ϕ(u) and ψ(u) are the node

and context embeddings of node u, respectively. The objectives O1 and O2 are

optimized with negative sampling approach (Equation 14) through edge sampling.

BiNE

The constructed co-location network is essentially a bipartite network with two

types of nodes (users and locations). To better capture the properties of the bipartite

network in the node representations, Gao et al.[6] proposed BiNE. It performs biased

random walks designed for bipartite networks to obtain vertex sequences and then

applies the proposed optimization framework on those vertex sequences.

The biased random-walk procedure can be summarized as follows: The random

walk starts from a node u and moves to one of the nodes u’s neighbors at each

step. This random-walk process is stopped with probability p at each step. For each

node, the random-walk process is repeated n number of times where n is dependent

on the importance of node u. BiNE sets the importance of the node equal to the

authority score computed from the Hubs and Authorities Algorithm [7].
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Given a bipartite network, BiNE computes two homogeneous networks – for co-

location network the homogeneous networks would be individual-individual network

and location-location network. The biased random walk is then independently per-

formed on those two homogeneous networks. These random walks are then treated

as sequences and the skip-gram model is applied on the target and context node

pairs from these sequences. Mathematically, these two objective functions can be

summarized as follows.

O1 = minimizeϕ − logPr({ui−w, · · · , ui+w}\ui | ϕ(ui)) (6)

and

O2 = minimizeϕ − logPr({lj−w, · · · , lj+w}\lj | ϕ(lj)) (7)

where ui and li are the target individual and location nodes, respectively. The ob-

jective functions O1 and O2 are intractable, and hence negative sampling (Equation

14) is utilized where negative samples are taken from the corresponding homoge-

neous networks. An additional constraint is imposed on individual embedding, ϕ(u),

and location embedding, ϕ(l), which can be summarized as follows

O3 = minimize
∑

(ui,lj)∈E

−w(ui,lj) logP̂ (ui, lj) where P̂ (ui, lj) =
1

1 + exp(−ϕ(ui)ϕ(lj))

(8)

where E represents the set of edges in the co-location graph. The above objective

function minimizes the KL-divergence between the empirical distribution of the

co-occurring probability between vertices and the reconstructed distribution using

node representations. BiNE performs joint optimization of the following objective

functions

minimize L = αO1 + βO2 + γO3 (9)

where α, β, and γ are the hyper-parameters.

We next briefly review the work of Xi et al. [8]. Using the coarse-grained co-

location network data from the AHDC Study, they adopt and leverage Latent

Dirichlet Allocation [9] (LDA) to identify activity-space pattern profiles and an

individual’s community affiliation within the Columbus Metropolitan area. Xi et

al. [8] provide initial evidence that such community structure offers meaningful

dimensions of neighborhood functioning with respect to socioeconomic and racial

composition.

The model can be summarized as follows: let Yni,j be the indicator function that

the individual i (1 ≤ i ≤ I) visits location j (1 ≤ j ≤ J) where I and J are total

number of individuals and total number of locations.



Page 5 of 15

The LDA model assumes

Yni,j |pni,j
iid∼ Bernoulli(pni,j) (10)

where pni,j = Wi. × Hk.. Here, W ∈ RI∗K refers to the community assignment

matrix and H ∈ RK∗J is the row stochastic matrix representing the probability of

individual from community k visiting location j.

The following priors on W and H are as follows

Wi.
iid∼ Dirichlet(α) (11)

and

Hk.
iid∼ Dirichlet(β) (12)

where α and β are known constant vectors of dimension K and J , respectively.

Then, the LDA model identifies the parameters (W,H) such that the following

probability is maximized

P (Yni,j = 1) =

K∑
k=1

P (ci = k)× P (lni
= j|ci = k) =

K∑
k=1

Wik ×Hjk (13)

where ci is community of individual i and lni
be the nth location visited by individual

i. The parameters are estimated with Gibbs sampling method. LDA can identify

the latent communities (topics) representation present in the co-location network

through community assignment vector – a discrete probability distribution over

communities – for the adolescents.

LocationTrails:

Like the work of Xi et. al. [8], LocationTrails [10] is designed to operate on co-

location networks. However, it also takes inspiration from some of the neural models

we have presented above. Instead of performing random walks on the co-location

graphs, LocationTrails constructs sequences from the adolescents’ actual location

visits and then learns the node representations from these sequences. The con-

structed sequences can be abstractly viewed as performing constrained walks on

the co-location network. LocationTrails then extract source and context nodes and

apply the skip-gram model to learn the node embeddings. The intractable nor-

malization factor in the skip-gram model (Equation 1) is approximated with the

negative sampling in LocationTrails. Mathematically,

log Pr(vj |ϕ(vi)) = log σ(ϕ(vj).ϕ(vi)) +
m∑

p=1

Evk∼Pv(vi)[ log σ(−ϕ(vk).ϕ(vi)) ]
(14)
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Deepwalk LINE LocationTrails LDA Metis Graclus

Deepwalk 1.00 0.45 0.35 0.15 0.41 0.44
LINE 0.45 1.00 0.37 0.14 0.35 0.35
LocationTrails 0.35 0.37 1.00 0.14 0.28 0.30
LDA 0.15 0.14 0.14 1.00 0.13 0.13
Metis 0.41 0.35 0.28 0.13 1.00 0.39
Graclus 0.44 0.35 0.30 0.13 0.39 1.00

Table 1: Normalized Mutual Information between clusters.

where m is the number of negative samples, σ is the sigmoid function, vk is the

negative sampled node, and Pv(vi) is the noise distribution of all the nodes. The

noise distribution Pv(vi) is set as the unigram distribution of all the nodes raised

to power 0.75.

Experiments on real-world human mobility (traffic) datasets show that Loca-

tionTrails outperforms existing network representation learning methods (including

Deepwalk) in terms of learned node quality, running time, and memory consump-

tion. Moreover, given the localized nature of its random walks, LocationTrails can be

trained locally on edge devices using federated learning. Therefore, it can mitigate

user’s privacy concerns.

Quantitative analysis
The Tables 1 shows the Normalized Mutual Information (NMI) [11] between the

clusters computed by the methods, respectively. NMI quantify the amount of overlap

between clusters. We observe that both metrics have high overlap values between

Deepwalk, LINE, Metis and Graclus. However, the overlap between LocationTrails

and the rest of the methods is relatively lower.

Cluster Analysis: BiNE
From Figure 3, we observe that BiNE fails to identify meaningful communities

for the bipartite co-location network. There are two rationales for this poor per-

formance: existence of common hubs and low authority scores. Recall that BiNE

constructs two homogeneous networks (individual-individual network and location-

location network) from the individual-location co-location network. An edge be-

tween two individuals exists if they visit common locations. However, the human-

mobility co-location network consists of few hubs such as malls, schools, and recre-

ation centers that are visited by multiple individuals. As a result, there exist a lot

of noisy individual-individual edges. This can be observed by the relatively high

density of individual-individual network (density = 2.4%), while the density of co-

location network is 0.04%. Note that the density of the network is 2m/n(n − 1)

where m and n are the number of edges and the number of nodes, respectively. The

second rationale for BiNE’s performance is due to low authority scores. Recall that

the number of random walks per node is dependent on the authority score of the

node. We observe that for the human-mobility co-location network, these authority

scores are too low (mean authority for users and locations are 0.001 and 0.0003,

respectively). The low authority scores result in reducing the number of random

walks per node, thereby affecting the quality of the node representations. We also

performed an experiment where we increased minimum number of random-walks
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Figure 3: BiNE: Number of clusters = 18. (Home location anonymized)

per node parameter for BiNE, but the learned representations were still of poor

quality due to noisy individual-individual edges.

Modularity based community detection
In Figure 4, we present the clusters identified by algorithm presented in Clauset et

al. [12]. We use R library ‘condor’ to compute the communities. From Figure 4, we

observe that the algorithm proposed by Clauset et al. [12] identifies residentially

proximate clusters in both white-dominated and black-dominated neighborhoods.

The NMI between clusters identified by algorithm presented in Clauset et al. [12]

and other methods on white-dominated neighborhoods are Deepwalk (0.22), LINE

(0.19), LocationTrails (0.19), LDA (0.16), Metis (0.19) and Graclus(0.17). The NMI

between clusters identified by algorithm presented in Clauset et al. [12] and other

methods on black-dominated neighborhoods are Deepwalk (0.15), LINE (0.16), Lo-

cationTrails (0.13), LDA (0.17), Metis (0.17) and Graclus(0.14).

Cluster Analysis: Hyper-parameter results
In this section, we present the adolescent clusters identified by the selected methods

with different hyper-parameter settings. Overall, we observe the identified clusters

to be stable with minor variations. The mobility pattern-related inferences (such as

the presence of residentially proximate clusters in white-dominated neighborhoods)

drawn for methods are consistent across hyper-parameters. Note that, due to the

limitation of space, we are presenting only a few hyper-parameter visualizations.
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Figure 4: Clauset et al. [12]
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Figure 5: Deepwalk: walk length=5, number of walks=80, context window=5
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Figure 6: Deepwalk: walk length=10, number of walks=80, context window=10
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Figure 7: Deepwalk: walk length=20, number of walks=40, context window=3
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Figure 8: LINE: Number of negatives=3, number of samples=5 billion



Page 11 of 15

39.85

39.90

39.95

40.00

40.05

40.10

−83.1 −83.0 −82.9
Longitude

La
tit

ud
e

Community

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 9: LINE: Number of negatives=10, number of samples=10 billion
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Figure 10: BINE: Number of negatives=1, window size=5, probability=0.15,

beta=1, gamma=0.1



Page 12 of 15

39.85

39.90

39.95

40.00

40.05

40.10

−83.1 −83.0 −82.9
Longitude

La
tit

ud
e

Community

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 11: BINE: Number of negatives=4, window size=9, probability=0.15,

beta=0.01, gamma=1
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Figure 12: LocationTrails: Context window=5
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Figure 13: LocationTrails: Context window=10
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Figure 14: LDA: Gibbs number of iterations=10,000
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Figure 15: BINE: Number of negatives=10, window size=5, probability=0.5,

beta=0.001, gamma=0.01
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Figure 16: Metis: Cut objective=“volume”
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Figure 17: Graclus: Cut objective=“ratio association”


