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This supplementary material relates to the paper Towards Explainable Community

Finding by Sadler et. al [1]. A zip file containing results and python scripts for

statistical analysis can be found on OSF at: https://osf.io/g4bwt/

1 Feature Values
Figure 1, displayed below, shows the range of values the important features take

for data points belonging to both classes in each of the classification problems.

Subfigures (a) - (d) show feature values for nodes of both the “easy to cluster” and

“hard to cluster” classes, while subfigures (e) - (g) show feature values for pairs of

nodes belong to both the same and different communities. In all cases, the solid

marks represent the minimum and maximum values of these features across all 120

graphs of the relevant mu level, while the translucent mark represents the mean

value.

2 Pairwise Wilcoxon Tests
Figures 2 and 4 displayed below, also present in the paper, show distributions of

the features’ permutation importances. Each plot represents one algorithm run on

120 graphs of one µ value. Thus, for each feature on the y axis, there are 120

permutation importance values. The black and red circular marks represent the

mean and median of these values, while the black bar represents a non-parametric

bootstrap of the 95% confidence interval.

For each plot in figures 2 or 4, there is then a corresponding plot in figures 3 or

5 respectively. The plots in figures 3 and 5 are heatmaps representing the results

from pairwise Wilcoxon tests between features. These tests were run for every pair

of features to identify whether the distributions of the permutation importance

values for the two features were significantly different (subject to Bonferroni-Holm

corrections). The colour of the cell in the heatmap represents whether there was

a significant difference or not, with a key in the upper right. A significance of

0 represents no significant difference; a significance of 1 represents a significant

difference.

2.1 Node Feature Experiments

For the node feature experiments, we observed qualitatively from figure 1 that four

of the features consistently have a non-zero permutation importance: clustering co-

efficient, eigenvector centrality, expansion and triangle participation. Our pairwise

Wilcoxon tests confirmed, as reported in the main paper, that these four features
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were significantly different from the rest of the features, with the following excep-

tions:

• For Louvain at µ = 0.2, clustering coefficient was not significantly different

from betweenness centrality, cut ratio, or Eout.

• For Infomap at µ = 0.2, clustering coefficient was not significantly differ-

ent from degree, Ein, Eout or shortest path. Triangle participation was not

significantly more important than degree or Ein.

• For Infomap at µ = 0.3, clustering coefficient was not significantly different

from closeness centrality, degree, Ein or shortest path.

• For LPA at µ = 0.2, clustering coefficient was not significantly different from

any of betweenness centrality, closeness centrality, cut ratio, degree, Ein or

average shortest path.

This can be observed from the heatmap in figure 2.

2.2 Pair-node Feature Experiments

For the pair-node feature experiments, we observed qualitatively from figure 4 that

two features were consistently important across the three community finding algo-

rithms: cosine similarity and the Jaccard coefficient. We also found that the max-

imum edge centrality along the shortest path became more important at higher

mixing parameter levels. The pairwise Wilcoxon tests, as displayed in figure 5,

confirmed that all three were significantly more important across all experiments,

including for max edge centrality at the µ = 0.2 level despite the small effect size.

3 Shapley Values
The node and node-pair experiments were also carried out with the use of Shapley

values in place of permutation importance, in order to verify the results with an

alternative importance ranking method. The same experimental data was used, with

the only difference being the calculation of feature importance. These results are

displayed in figures 6 and 7.

In the case of the node experiments, we see clearly that for Louvain and LPA, the

same four node features are more important with increasing mu value as we saw with

permutation importance: clustering coefficient, expansion, eigenvector centrality,

and triangle participation. With Infomap, there is some variation; the same four

features are seen to be important, though not at all mu values. In addition, E In

is shown to be important, as are Degree and Closeness Centrality at the lower mu

values.

In the case of the node-pair experiments, the same trends are seen as for permuta-

tion importance. Jaccard and cosine similarity are consistently the most important,

with max edge centrality increasing in importance with rising mu value.

4 Results Files
The zip file contains a sub-folder for each of the three algorithms. Within each of

these is a pickle results file for each of the graphs on which this algorithm was

run. Each results file contains the graph number (1-120), the µ value (0.2, 0.3, 0.4

represented by 2, 3, 4) and the type of experiment (node, pair) in the title. For

example, for graph 11 at a µ value of 0.3 on the node features, the file is named:

“graph 11 mu 0 3 node” and can be loaded in Python like so:
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import pickle

with open(’graph_11_mu_0_3_node’, ’rb’) as f:

results = pickle.load(f)

The results object is then a Python dictionary. The keys and values of the results

dictionary are as follows:

• Stable Nodes: Present in node experiments only. Int representing number of

stable nodes.

• Unstable Nodes: Present in node experiments only. Int representing number

of unstable nodes.

• Different Communities: Present in pair-node experiments only. Int represent-

ing number of pairs of nodes in different communities.

• Same Communities: Present in pair-node experiments only. Int representing

number of pairs of nodes in the same community.

• Stability Cutoff : Present in node experiments only. Float representing entropy

value below which nodes are labelled stable, and above which nodes are la-

belled unstable. This cutoff is determined through one dimensional k-means

k = 2.

• Undersampling Level : Float representing amount of undersampling.

• Feature Importances: Dictionary. Keys are the feature names as displayed on

plots below. Values are floats representing the permutation importance of the

feature for this random forest.

• Accuracy Scores: List of 50 floats representing accuracy on 50 cross-validation

runs.

• Balanced Accuracy Scores: List of 50 floats representing balanced accuracy on

50 cross-validation runs.

5 Analysis Scripts
Also included in the zip file are three Python scripts containing the code used for our

statistical analysis. As long as these are in the same location as the three algorithm

sub-folders containing the results, no adjustments to the code are necessary and

they can be run immediately to obtain a statistical output.

The first of these is the “shapiro tests.py” file. Running this will generate re-

sults from Shapiro tests used to identify if the permutation importances are

normally distributed, in two new CSV files: “node feature shapiro vals.csv” and

“pair feature shapiro vals.csv”. Each of these contains three columns: an index col-

umn, a column titled “Shapiro” and a column titled “p Value”. The values in the

index column are named with the algorithm, µ value and feature, for example:

“Louvain mu 0 2 Degree”. Due to the presence of the index column, the CSV file

must be loaded in Python with the index col flag:

pd.read_csv(’node_feature_shapiro_vals.csv’,

index_col=0)

The “Shapiro” and “p Value” columns then contain the value of the Shapiro statistic

and the p value for the feature named in the index column.

The second script is the “Wilcoxon tests.py” script. This generates the heatmaps

displayed below showing which pairs of features have significantly different per-

mutation importance distributions. Heatmaps will be stored in a new folder
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entitled “Results Plots”. The script also generates an accompanying CSV file,

“wilcoxon vals.csv” containing p values from the Wilcoxon tests. As with the CSV

files produced by the Shapiro test script, this has 3 columns, the first of which is an

index column naming the two features which are being compared. The second col-

umn is titled “Wilcoxon p Value” and contains the p value for that pair of features.

The third and final column is titled “Compare to” and contains the value that this

p value must be compared with to determine significance. This value varies, due to

the Bonferroni-Holm correction.

The final script is the “distribution plot gen.py” file. This generates the distri-

bution plots shown in figures 2 and 4 below. Implicitly calculated in this process

are the mean, median and non-parametric bootstrap of the 95% confidence inter-

val, as Altair carries out these calculations when generating the plots. As with the

heatmaps, these will be saved in a “Results Plots” folder.

Author details
1Swansea University, UK. 2School of Computer Science, University College Dublin, Ireland.
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(a) Clustering Coefficient (b) Eigenvector Centrality

(c) Expansion (d) Triangle Participation

(e) Cosine Similarity (f) Jaccard

(g) Max Edge Centrality

Figure 1: Values of the most important features for both classes in each classifi-

cation problem.
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(a) Infomap, µ = 0.2 (b) Infomap, µ = 0.3

(c) Infomap, µ = 0.4 (d) Louvain, µ = 0.2

(e) Louvain, µ = 0.3 (f) Louvain, µ = 0.4

(g) LPA, µ = 0.2 (h) LPA, µ = 0.3

Figure 2: Results of the node feature experiments
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(a) Infomap, µ = 0.2 (b) Infomap, µ = 0.3

(c) Infomap, µ = 0.4 (d) Louvain, µ = 0.2

(e) Louvain, µ = 0.3 (f) Louvain, µ = 0.4

(g) LPA, µ = 0.2 (h) LPA, µ = 0.3

Figure 3: Heatmaps showing significance of Wilcoxon tests on the node feature

experiments
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(a) Infomap, µ = 0.2 (b) Infomap, µ = 0.3

(c) Infomap, µ = 0.4 (d) Louvain, µ = 0.2

(e) Louvain, µ = 0.3 (f) Louvain, µ = 0.4

(g) LPA, µ = 0.2 (h) LPA, µ = 0.3

Figure 4: Results of the pair feature experiments
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(a) Infomap, µ = 0.2 (b) Infomap, µ = 0.3 (c) Infomap, µ = 0.4

(d) Louvain, µ = 0.2 (e) Louvain, µ = 0.3 (f) Louvain, µ = 0.4

(g) LPA, µ = 0.2 (h) LPA, µ = 0.3

Figure 5: Heatmaps showing significance of Wilcoxon tests on the pair feature

experiments
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(a) Infomap, µ = 0.2 (b) Infomap, µ = 0.3

(c) Infomap, µ = 0.4 (d) Louvain, µ = 0.2

(e) Louvain, µ = 0.3 (f) Louvain, µ = 0.4

(g) LPA, µ = 0.2 (h) LPA, µ = 0.3

Figure 6: Results of the node feature experiments using Shapley values instead

of permutation importance
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(a) Infomap, µ = 0.2 (b) Infomap, µ = 0.3

(c) Infomap, µ = 0.4 (d) Louvain, µ = 0.2

(e) Louvain, µ = 0.3 (f) Louvain, µ = 0.4

(g) LPA, µ = 0.2 (h) LPA, µ = 0.3

Figure 7: Results of the pair feature experiments using Shapley values instead of

permutation importance


