Chapter 5
Discrete Fourier Transform

5.1 Introduction

Discrete Fourier transform (DFT) is a frequency domain representation of finite-length discrete-time signals. It is also used to represent FIR discrete-time systems in the frequency domain. As the name implies, DFT is a discrete set of frequency samples uniformly distributed around the unit circle in the complex frequency plane that characterizes a discrete-time sequence of finite duration. DFT is also intrinsically related to the DTFT, as we will see in this chapter. Because DFT is a finite set of frequency samples, it is a computational tool to perform filtering and related operations. There is an efficient algorithm known as the Fast Fourier Transform (FFT) to perform filtering of long sequences, power spectrum estimation, and related tasks. We will learn about the FFT in this chapter as well.
5.2 Definition of DFT

The DFT of an N-point or length-N sequence is defined as

(5.1)

It is customary to use the notation . We can, therefore, rewrite (5.1) as

(5.2)

From the definition, it is clear that the DFT of an N-point sequence is indeed discrete and has the same length as the sequence. Remember that corresponds to the sampling frequency. So, the DFT is a set of frequency samples spaced uniformly over one sampling frequency. We also observe that the DFT is periodic with period because of the fact that

(5.3)

5.3 Relationship Between DTFT and DFT

Recall the definition of DTFT of an N-point sequence , which is

(5.4)

If we sample the DTFT at N points equally spaced around the unit circle , we get

(5.5) ,

which is the DFT of the N-point sequence. Thus, the DFT of an N-point sequence is the DTFT of that sequence sampled at N points equally spaced around the unit circle in the frequency domain. In other words, the DFT is the sampled version of the DTFT with the samples spaced uniformly around the unit circle in the frequency domain.

Example 5.1 Find the DFT of the sequence and compare it with the DTFT of the same sequence.

Solution: Using the definition of the DFT, we can write

(5.6)

By collecting the two factors inside the summation in equation (5.6), we can express the DFT as

(5.7)

The right hand side of (5.7) is a geometric series and so, can be written in closed form as

(5.8)

We can express the DFT in (5.8) in magnitude-phase form as given below:

(5.9a)

(5.9b)

The magnitude and phase of the DFT of the sequence in Example 5.1 are shown in Figures 5.1a and b, respectively. The plots also show the DTFT of the same sequence. It is evident that the DFT is the sampled version of the DTFT. The sequence length chosen is 32 samples.

Place Figures 5.1a and b here

Figure 5.1 DFT and DTFT of an N-point sequence in Example 5.1: a) Magnitude of the DFT and DTFT; b) Phase of the DFT and DTFT

5.4 Inverse DFT

The process of recovering a sequence from its DFT is called the inverse discrete Fourier Transform (IDFT). If the IDFT does not exist, then there is no use for the DFT. Fortunately, the IDFT does exist and is defined as

(5.10)

Proof: To prove that the IDFT is indeed , let us substitute for in (5.10) to get

(5.11)

By interchanging the order of summation in (5.11), we have

(5.12)

But the inner summation results in

(5.13)

Therefore, the right hand side of (5.12) equals . Hence, the result.

5.4 Effect of Sampling the DTFT on the Reconstructed Sequence

We saw in chapter 2 that the effect of sampling a continuous-time signal is to replicate the frequency spectrum of the continuous-time signal in the frequency domain. So, if the continuous-time signal is strictly band-limited, then the replicated spectra do not overlap in the frequency domain. Therefore, there is no aliasing distortion and the continuous-time signal can be recovered exactly from the corresponding discrete-time sequence. The duality of this result is as follows. If we sample the frequency spectrum or DTFT of a discrete-time sequence at a finite set of points equally spaced around the unit circle in the complex plane, then the reconstructed sequence using IDFT is a replicated version of the original sequence. If the length of the original sequence is equal or smaller than the number of frequency samples, then the reconstructed sequence from the IDFT will have no distortion. Let us prove this result as follows. Consider a sequence , whose DTFT is given by

(5.14)

If we sample at M points spaced uniformly around the unit circle, we will have an M-point DFT sequence. Denote this sequence by . Therefore,

(5.15)

The sequence can be found by performing the IDFT of , which is

(5.16)

Using equation (5.15) in (5.16), we can rewrite (5.16) as

(5.17)

By interchanging the order of summation in (5.17), we obtain

(5.18)

However, since

(5.19)

we have

(5.20)

Thus we find that the reconstructed sequence is the sum of the replicas of the sequence shifted by integer multiples of the number of frequency samples. If the sequence is time-limited to , then is exactly equal to between 0 to M-1. Otherwise, the replicas overlap and cause distortion in the sequence . Let us illustrate the idea of frequency sampling by the following example.

Example 5.2 Find the M-point DFT of an N-point sequence of your choice. Then calculate the M-point IDFT and compare the two sequences to see if there is any distortion.

Solution: Let the sequence be described by

(5.21)

We can use the MATLAB to calculate the DTFT of the sequence in (5.21). The function to use is freqz, which accepts the coefficients of the polynomials of the numerator and denominator of a transfer function. However, in this example since the sequence is of finite length, its DTFT is just a polynomial with the coefficients corresponding to the given sequence. To calculate the DTFT, we use the statement . The DTFT is returned in H at N points uniformly spaced around the unit circle. Here A is a vector of the same size as the sequence and is all zeros except the first element, which is unity. W is the set of N normalized frequency points between zero and . Next we sample the DTFT at M equally spaced points around the unit circle. This is done by retaining every N/M samples of the DTFT that we just calculated. The M-point sequence is recovered by performing the inverse DFT of the M samples of the DTFT. The IDFT of the M-point DFT X can be computed using the MATLAB function ifft. The actual function call is . The two sequences can then be compared to see if there is distortion in the sequence y. The 32-point sequence in (5.21) is plotted and shown in the top plot in Figure 5.2. The sequence obtained from the IDFT of the DFT of the 32-point sequence with M = 32 is shown in the bottom plot of Figure 5.2. Since N = M, we find no distortion in the recovered sequence. Next, the sequence obtained from 8-point IDFT is shown in the bottom plot of Figure 5.3. As can be seen from the figure, since M < N, there is a significant distortion in the sequence y[n]. For N = 32 and M = 8, the sequence in the discrete-time domain is obtained by adding the replicas of the original sequence shifted left by 0, M, 2M, and 3M as given by

(5.22)

The sequence obtained from (5.22) is plotted and shown in the bottom figure of Figure 5.4. As a comparison, the top plot in Figure 5.4 is the same as that shown in the bottom plot in Figure 5.3. This shows that when , distortion occurs in the reconstructed sequence because of overlapping of the replicas. This is further demonstrated by plotting the magnitude of the spectrum of the sequence obtained from (5.22), which is shown in the bottom plot in Figure 5.5. In comparison to the spectrum of the original sequence shown in the top plot in Figure 5.5, we observe that the spectrum of the sequence obtained by summing the replication of the original sequence is quite different, implying that there is distortion due to the fact that M < N.

Place Figure 5.2 here

Figure 5.2 32-point IDFT from the 32-point sequence: Top plot: Actual sequence of length 32; Bottom plot: Sequence obtained from 32-point DFT of the sequence in Example 5.2

Place Figure 5.3 here

Figure 5.3 8-point IDFT from the 32-point sequence: Top plot: Actual sequence of length 32; Bottom plot: Sequence obtained from 8-point DFT of the sequence in Example 5.2

Place Figure 5.4 here

Figure 5.4 Calculation of the sequence using equation 5.20: Top plot: sequence obtained by IDFT of the DFT samples; Bottom plot: sequence obtained from equation (5.20)

Place Figure 5.5 here

Figure 5.5 Spectra of the original sequence and that of the sequence obtained from (5.22): Top plot: Spectrum of the original sequence; Bottom plot: Spectrum of the sequence obtained from (5.22)

5.5 Circular Convolution

The convolution we described earlier is called linear convolution. In linear convolution the two sequences to be convolved can be of finite length or of infinite length. To linearly convolve two sequences, one of the sequences is time-reversed or flipped around the origin and slid left or right one sample at a time and the product of the sequences is summed. Also, the linear convolution of two sequences of the same length N results in a sequence of length 2N-1. Circular convolution is meant for finite-length sequences. In circular convolution, the two sequences to be convolved are of the same length. If not, the sequence of smaller length is zero-padded to be of the same length. The circular convolution of two sequences of the same length N results in a sequence, which is also of length N. In circular convolution, one sequence is shifted circularly over the other sequence one sample at a time, the two are multiplied and the product summed to yield the convolved sequence. Circular shift implies that the circular convolution is periodic with period N, which is the length of the sequences. Having described circular convolution qualitatively, let us give the formal definition of circular convolution.

Definition of circular convolution: The circular convolution of two N-point sequences is another N-point sequence and is defined as

(5.23)

In equation (5.23), the notation refers to modulo-N operation. For instance, five modulo four is . To distinguish from linear convolution, we will use the symbol to denote circular convolution. We can, therefore write (5.23) in terms of the symbol for circular convolution as

(5.24)

Matrix representation of circular convolution: The circular convolution in equation (5.23) can also be represented in matrix form as given below:

(5.25)

We will explain the circular convolution of two finite-length sequences by an example.

Example 5.3 Calculate the circular convolution of the sequences and .

Solution: From equation (5.23), we can write the circular convolution as

The following figure is a graphical representation of computing the circular convolution of the two sequences in Example 5.3. Here, the sequence h[n] is rotated counter clockwise one sample at a time, multiplied point by point by x[n] and then the product added to obtain the circular convolution at sample index n. The process is continued until the N-point circular convolution is completed.

Place Figure 5.6 here

Figure 5.6 Graphical representation of the computation of circular convolution of the two sequences specified in Example 5.3.

The same can also be obtained via matrix equation, which is

(5.26)

5.6 Properties of the DFT

As in Z-transform and DTFT, one can exploit the properties of the DFT in solving problems with elegance and efficiency. In this section we will describe some properties of the DFT with proof where necessary.

Linearity: The DFT is a linear transform. That means that the following equation holds:

(5.27)

In the above equation, both and are N-point sequences, , and and are constants.

Circular time-shifting: If an N-point sequence is circularly shifted in time by , then the DFT of the time shifted sequence is described by

(5.28)

Proof: From the definition of DFT, we have

(5.29)

By using in the above equation, we can rewrite (5.29) as

(5.30)

Circular frequency-shifting: If the DFT of an N-point sequence is circularly shifted by an integer , then the corresponding discrete-time sequence is given by

(5.31)

The proof is similar to that used for circular time-shifting property.

Circular convolution theorem: The DFT of the circular convolution of two N-point sequences is the product of the two DFTs. That is,

(5.32)

The proof is similar to that given for the linear convolution.

Modulation: The modulation theorem states that the IDFT of the circular convolution of two N-point DFTs results in the product of the corresponding discrete-time sequences. In other words,

(5.33)

Proof: Using the definition of IDFT, we can write the IDFT of the circular convolution found on the left hand side of (5.33) as

(5.34)

By interchanging the summation order, we can rewrite (5.34) as

(5.35)

Substitute in the above equation, which results in

(5.36)

Energy conservation (Parseval’s theorem): This property states that the energy of a sequence in the discrete-time domain is conserved in the frequency domain. The implication is that one can calculate the energy in a sequence either in the time domain or equivalently in the DFT domain. The result is the same. In mathematical terms, Parseval’s theorem implies

(5.37)

Proof: To be sure that the above statement is true, let us write the energy of an N-point sequence as

(5.38)

In (5.38), replace by its IDFT, so we can rewrite (5.38) as

(5.39)

Interchanging the order of summation in (5.39), we have

(5.40)

The following Table lists the properties of DFT for easy reference.

Table 5.1: Properties of DFT
	Property
	Length-N sequence
	N-point DFT

	
	

	

	Linearity
	
	

	Circular time-shifting
	
	

	Circular
Frequency-shifting
	
	

	Circular convolution
	
	

	Modulation
	
	

	Parseval’s theorem
	

Example 5.4 Compute the circular convolution of the sequences in Example 5.3 using the circular convolution property of DFT.

Solution: Let y[n] be the circular convolution of x[n] and h[n], which are of length 4. Therefore, y[n] is also of length 4. The DFT of y[n] is given by

(5.41)

To compute X[k] and H[k],we can use the matrix equation for the DFTs. The DFT of the 4-point sequence x[n] can be expressed in matrix equation as

(5.42)

In (5.42), is a 4x4 DFT matrix with the row index corresponding to n and column index corresponding to k. So,

(5.43)

Using (5.43) in (5.42), we get

(5.44)

Similarly, the DFT of h[n] using the matrix equation is given by

(5.45)

Then, by circular convolution property, the DFT of y[n] is given by

(5.46)

The inverse DFT of Y will give us the sequence y[n], which is the circular convolution of x[n] and h[n]. Therefore, we have

(5.47a)		

The DFT matrix is orthogonal, which means that the inverse of the DFT matrix is its own conjugate transpose. That is,

(5.47b)

Therefore, we have
(5.47c)

This is what we got by carrying out the circular convolution in the discrete-time domain.

5.7 Linear Convolution using Circular Convolution
We mentioned that since DFT is discrete, meaning that it is defined over a finite set of points, it is amenable to digital computation. Then, how can we use DFT to perform linear convolution? The answer is as follows. Let us consider two sequences x[n] of length M and h[n] of length N. Then the linear convolution of x[n] and h[n] is a sequence of length L = M+N-1. The circular convolution of two sequences of the same length is a sequence, also of the same length. Therefore, to perform the linear convolution of x[n] and h[n], we must make the lengths of the two sequences equal to L. This is achieved by appending the sequence x[n] with L-M zeros and h[n] with L-N zeros. Once the lengths of the sequences are made equal, we can compute the DFTs of the two L-point sequences, multiply them point-by-point, and then perform the inverse DFT to obtain the linear convolution.

Example 5.5 Compute the linear convolution of the two sequences in Example 5.3 using circular convolution.

Solution: The two sequences in Example 5.3 are of length 4. Therefore, the linear convolution will result in a sequence of length 7. We must first make the lengths of the sequences equal to 7 by appending three zeros to each sequence. We can use the matrix equation as in (5.25) to obtain the linear convolution. It is given by

		

The DFT is also performed using FFT algorithm. The FFT algorithm is efficient when the sequence length is an integer power of 2. In this example, since the length of the linear convolution is 7, which is not an integer power of 2, we will use 8, instead. So, the two zero-padded sequences are

We, then compute the DFTs of length-8 and using the FFT algorithm. As mentioned before, the MATLAB function fft computes the DFT of a sequence. After computing the DFTs, we have to multiply them point-by-point to obtain the DFT of the linear convolution of the two zero-appended sequences. The discrete-time sequence is then found by taking the IDFT of the DFT product. Again, this is achieved by the inverse FFT. The corresponding MATLAB function is ifft. The 8-point DFTs of the two zero-padded sequences are shown in Figure 5.7. The DFT of the circular convolution of the two zero-padded sequences are shown in the top plot in Figure 5.8 and the linear convolution using circular convolution is shown in the bottom plot of Figure 5.8. The first seven samples are the valid samples of the linear convolution.

Place Figure 5.7 here

Figure 5.7 DFTs of the zero-padded sequences in Example 5.5: Top plot: DFT of the sequence ; Bottom plot: DFT of the sequence

Place Figure 5.8 here

Figure 5.8 Linear convolution via circular convolution: Top plot: DFT of the circular convolution of and ; Bottom plot: Sequence corresponding to the linear convolution

5.8 Linear Convolution of a Finite-length Sequence with an Infinite-length Sequence

In the previous section we described how to use circular convolution to achieve linear convolution of two finite-length sequences. This was fine and dandy because the lengths of the two sequences were assumed to be small and so padding with zeros was okay. In practice, one of the sequences to be convolved is relatively small, such as an FIR filter, and the other sequence is relatively very long. In such cases, zero-padding the smaller-length sequence is not computationally efficient. It also introduces a long delay in the output because one has to wait until all the samples of the input sequence are acquired. Is there a way out of this situation? The answer is yes. Remember, the reason for using circular convolution to enable linear convolution is the computational efficiency of the FFT algorithm. We will describe two algorithms to compute the linear convolution of a relatively small sequence with an infinitely long sequence, which are called overlap and add and overlap and save methods.

5.8.1 Overlap and Add

A qualitative statement of the overlap and add method is as follows. In this method, the longer sequence is divided into non-overlapping segments and each segment is circularly convolved with the smaller-length sequence. Of course, we must zero-pad the smaller-length sequence and the segmented sequence to make the length conforming to the linear convolution. As a result of the linear convolution, the length of the output will be larger than the segment length. Therefore it will overlap with the next segment. The overlapping samples are added to produce the correct linear convolution. Hence, the name, overlap and add. Let us now describe the procedure in detail. Let be the infinitely long input sequence and let be the length-N sequence. Divide the input sequence into non-overlapping blocks of length M samples each, where M > N. We can, therefore, express the input sequence in terms of the segmented blocks, as given by

(5.48)

where, the segmented sequences are given by

(5.49)

We next perform the linear convolution of each segment with . The overall output can be expressed as

(5.50)

Using equation (5.48) in (5.50), we can rewrite (5.50) as

(5.51)

By interchanging the order of summation in (5.51), we have

(5.52)

where

(5.53)

So, we have expressed the linear convolution of and as an infinite sum of the linear convolutions of the non-overlapping segments and . The length of each linear convolution is L = M + N -1. There are, therefore, N-1 samples that extend beyond each segment. These last N-1 samples fall into the first N-1 samples of the next segment. Therefore, these samples must be added to the first N-1 samples of the linear convolution of the next segment and so on. We must mention the fact that the linear convolution of each segment is computed using circular convolution via FFT for computational efficiency. The lengths of the two sequences in the circular convolution must be the same. Therefore, we must zero-pad the length-N sequence with M-1 samples and the length-M sequence with N-1 samples so that both sequences are of length L = M + N -1. Figure 5.9 shows the input and output sequences indicating which samples overlap in the output so that they are added to produce the correct result. We can list the steps involved in the calculation of the linear convolution of an infinitely long input sequence with a short sequence using the overlap-add method as follows:

1. Segment the long input sequence into non-overlapping blocks of length M samples long. Call each segment as
2. Append the length-N sequence with M-1 zeros.
3. Compute the L-point DFT of the zero-padded sequence . This is a one-time computation.
4. For each m, append the input segment with N-1 zeros to make its length L = M+N-1, and then compute its L-point DFT.
5. Multiply the two L-point DFTs point by point and perform the IDFT of the product to produce the output segment
6. Write the output segments sequentially by adding the last N-1 samples of the previous output segment to the first N-1 samples of the current output segment and so on.

Place Figure 5.9 here

Figure 5.9 Diagram illustrating the input segmentation and forming the output sequence by adding the overlapping samples

To make the procedure clearer, let us work out an example.

Example 5.6 Consider an input sequence, which is a sum of two sinusoids of frequencies 200 and 1100 Hz and amplitudes 1.5 and 2, respectively. The sampling frequency is 5000 Hz. Let the length of the input sequence be 2048 samples. Filter this sequence through an FIR lowpass filter of order 14 and a cutoff frequency of 625 Hz.

Solution: Using the specifications, the input sequence is expressed as

(5.54)

Next we need to design a lowpass FIR filter with a cutoff frequency of 625 Hz. We will defer the discussion on FIR filter design to a later chapter. For now, we will use the MATLAB function fir1, which accepts as input the cutoff frequency normalized to half the sampling frequency, filter order, and a window function. Since we have not learnt FIR filter design, we will not discuss windowing method or windows here. The MATLAB function call to design a lowpass FIR filter of order 14 and a normalized cutoff frequency of 625/2500 = 0.25 is B = fir1(14,0.25,window(@hamming,15)). The filter impulse response is returned in B, which is of length 15. The filtering of the long input sequence through a short FIR filter using the overlap and add technique can be carried out in MATLAB using the function fftfilt. It accepts the FIR filter impulse response B and the input sequence x, and returns the filtered sequence using the overlap and add technique. Or, we can write a routine based on the above listed procedure to carry out the overlap-add method of linear convolution. The MATLAB code to perform the overlap & add filtering is in the M-file named Overlap_add.m and is included in the CD. Figure 5.10 shows the plots of the input and filtered sequences as top and bottom plots, respectively over the first 256 samples. The corresponding frequency spectra are shown in Figure 5.11. From the figures it is clear that the FIR filter has passed the 200 Hz component and rejected the 1100 Hz component.

Place Figure 5.10 here
Figure 5.10 Result of overlap and add filtering of the input sequence in Example 5.6. Top plot: 1st 256 samples of the 2048-length input sequence; Bottom plot: 1st 256 samples of the filtered sequence

Place Figure 5.11 here

Figure 5.11 Frequency spectra of the input and filtered sequences of Example 5.6. Top plot: input frequency spectrum showing two frequency components at 200 and 1100 Hz; Bottom plot: Frequency spectrum of the filtered sequence containing only the 200 Hz component

5.8.2 Overlap and Save

This is an alternative method of linear convolution of a long sequence with a relatively short length FIR filter using circular convolution. Unlike the overlap & add method, the input sequence in the overlap & save method is segmented into overlapping blocks of length M samples. The last N-1 samples of the previous block overlap the first N-1 samples of the current block and so on. Here, N is the length of the FIR filter impulse response. Since we are performing linear convolution of each length-M block and length-N filter, the length of each output block is L = M+N-1 samples. Because we are using circular convolution to perform linear convolution, both the FIR filter impulse response and the input blocks must be padded with appropriate number of zeros to make the length equal to the length of the linear convolution, which is L. However, the first input block is padded with N-1 zeros at the front, while the rest of the blocks overlap with adjacent blocks over N-1 samples at the beginning, as shown in Figure 5.12. Because of this overlap, the first N-1 samples in the output blocks are discarded, as shown in Figure 5.12.

Place Figure 5.12 here

Figure 5.12 Diagram illustrating the input segmentation and forming the output sequence by discarding the first N-1 samples

The procedure for the overlap & save method is as follows:

1. Insert N-1 zeros at the beginning of the input sequence .
2. Segment the zero-padded input sequence into overlapping blocks of length L = M + N -1 samples, where the last N-1 samples of the previous block overlap with the first N-1 samples of the current block, and so on.
3. Append the length-N FIR filter with M-1 zeros to make its length L.
4. Compute the L-point DFT , of .
5. For each m:
a. Compute the L-point DFT
b. Calculate
c. Compute the IDFT
d. Discard the first N-1 samples of each
6. Form the true output sequence by concatenating the last M samples in each output block .

We will make it clear by working out an example.

Example 5.7 The input sequence and the FIR filter for this example are the same as in Example 5.6. We have to filter the long input sequence through a short FIR filter using overlap & save method.

Solution: Let us use the input block length to be 64 and N = 15. The first block is zero-padded with 14 zeros followed by 50 samples to make its length 64. The subsequent blocks overlap as shown in Figure 5.12. The FIR filter impulse response is appended with M – 1 = 49 zeros to make its length equal to 64. The DFT of the FIR filter impulse response is computed and is one time only. The rest of the calculations follow the procedure listed above. The input sequence and the filtered sequence are plotted over the first 256 samples and shown in the top and bottom plots in Figure 5.13. The corresponding frequency spectra are shown in Figure 5.14. The results of overlap & save method are in perfect agreement with those obtained from the overlap & add method. The MATLAB codes for this example are in the M-file named Overlap_save.m and is included in the CD.

Place Figure 5.13 here

Figure 5.13 Result of overlap and save filtering of the input sequence in Example 5.7. Top plot: 1st 256 samples of the 2048-length input sequence; Bottom plot: 1st 256 samples of the filtered sequence

Place Figure 5.14 here

Figure 5.14 Frequency spectra of the input and filtered sequences of Example 5.7. Top plot: input frequency spectrum showing two frequency components at 200 and 1100 Hz; Bottom plot: Frequency spectrum of the filtered sequence containing only the 200 Hz component

5.8.3 DFT Leakage

The DFT as we have described above, represents an N-point discrete-time sequence in the frequency domain precisely at the discrete frequencies , where is the sampling frequency. In the DSP jargon, are the frequency bins. One reason for using DFT is to determine the spectrum of a finite length discrete-time signal. If a frequency in the input signal does not coincide with one of the DFT bins, then the magnitude of the DFT of that particular signal will not be an impulse-like in shape. Instead, it will spread over the entire DFT bins. That is to say that the energy of the input discrete-time sequence in a particular frequency will leak into other neighboring bins. It smears the impulse-like frequency over the entire frequency bins. Therefore, the corresponding spectrum is only approximate. This is what is called the DFT leakage. Since we do not know the exact frequencies contained in a discrete-time sequence, we can only obtain an approximate spectrum of an input sequence. However, one can minimize the DFT leakage and obtain a better approximation to the spectrum by windowing the finite-length input sequence using a suitable window function. We will illustrate this phenomenon by an example using MATLAB.

Example 5.8 Illustration of DFT Leakage

Consider a sinusoid at a frequency of 10 Hz. First we sample the sinusoid at a frequency and retain samples. Choose , compute the DFT of the sampled sinusoid and plot the magnitude of the computed DFT. Next, choose a different sampling frequency, for instance, , and compute the DFT over the same 64 points and plot its magnitude. Compare the two DFTs.

Solution: The sinusoidal sequence is described by . The DFT of the sinusoid is computed using the MATLAB function X = fft(x). The M-file to solve this problem is named Example5_8.m and is included in the CD. The input sinusoid sampled at and is shown in Figure 5.15 in the top and bottom plots, respectively. The magnitudes of the corresponding DFTs are shown in Figure 5.16 in the top and bottom plots, respectively. We see the leakage of energy into neighboring DFT bins in the top plot of Figure 5.16, which is due to the fact that the input frequency does not correspond to a DFT bin. We see no leakage in the bottom plot of Figure 5.16 because the input frequency of 10 Hz corresponds to the fifth DFT bin, which is . By windowing the input sinusoid with a Kaiser window with , we are able to minimize the DFT leakage. This is clear from the plot in Figure 5.17.

Place Figures 5.17 through 5.17 here

Figure 5.15 Input sinusoidal sequence of Example 5.8: Top: Sampling frequency is 142.2 Hz, Bottom: Sampling frequency is 160 Hz

Figure 5.16 Magnitude of the DFT of the input sinusoid: Top: Sampling frequency is 142.2 Hz, Bottom: Sampling frequency of 160 Hz

Figure 5.17 Reduction of DFT leakage using Kaiser window

5.9 Discrete Transforms

Discrete Fourier Transform is a method of representing finite length sequences in the frequency domain. It is also used to perform filtering of both finite and long duration sequences. There are efficient methods to compute the DFT, which we will consider in another chapter. In general, frequency domain transforms used in digital signal and image processing fall under the category of unitary transforms. Let a finite length sequence be denoted by . In vector form, the sequence is described by

(5.55)

In (5.55), the superscript T denotes the transpose operation. The linear transformation of can then be represented in vector form by

(5.56a)		

Or in expanded form, the linear transformation in (5.56a) can be written as

(5.56b)		

5.9.1 Unitary Transform

The linear transformation described in (5.56a) or (5.56b) is termed unitary if the following condition is satisfied:

(5.57)		

That is, if the inverse of the matrix is its own conjugate transpose, then the linear transformation in (5.56) is unitary. Otherwise it is non-unitary. The unitary matrix is called the kernel matrix and its elements may be real or complex. The vector is known as the transformed vector and its elements are referred to as the transform coefficients.

Example 5.9 Consider a 4-point DFT. Is it a unitary transform?

Solution: From our earlier definition of the DFT of an N-point sequence, it is given by

(5.58)		

For N = 4, the DFT kernel matrix is found to be

(5.59)		

The rows of the kernel matrix in (5.59) correspond to the frequency points and the columns to the time index n. The conjugate transpose of the matrix in (5.59) is given by

(5.60)

The product of the matrices in (5.59) and (5.60) results in

(5.61)

Therefore, the DFT as defined above is not unitary. However, the DFT matrix is unitary. For instance, if we redefine the 4-point DFT matrix as , then it is easy to see that the product of the two matrices in (5.61) with a factor introduced in each matrix results in a 4x4 identity matrix.

5.9.2 Orthogonal Transform

A linear transform is said to be orthogonal if it satisfies the condition

(5.62)		

From (5.62), it is clear that the elements of the kernel matrix must be real. In other words, a linear transform is orthogonal if its coefficients are real and its inverse is its own transpose. It must be pointed out that a unitary transform need not be orthogonal. For instance, consider the 2x2 matrix given by

(5.63)

Then, its conjugate transpose takes the form

(5.64)		

From (5.63) and (5.64), it is found that . Therefore it is unitary. However, we find that

(5.65)

Therefore, the unitary transform in (5.63) is not orthogonal, which proves the statement.

5.9.4 Discrete Cosine Transform

Given a finite length sequence , its discrete cosine transform (DCT) is defined as

(5.66)		

In (5.66), is defined as
(5.67)

The elements of the N-point DCT kernel matrix are given by

(5.68)		

For example, the 4x4 DCT kernel matrix is determined from (5.68) and is given by

(5.69)

The sequence can be obtained from the unitary transform coefficients as follows:

(5.70)

In the case of DCT, the sequence is obtained by simply pre-multiplying the transformed vector by the transpose of the NxN DCT matrix.

Energy Conservation and Compaction Properties of Unitary Transforms: Consider an N-point sequence as a vector , its transformed vector using the unitary transform . Let and denote the energies in the two vectors. Then,

(5.71)

The above equation implies that the energy in the finite length discrete-time sequence is preserved in the transform domain. This is the energy conservation property of a unitary transform.

Even though the energy is preserved in the transform domain, the amount of energy contained in each transform coefficient is different. That is to say that the energy is unevenly distributed in the transform coefficients. Some coefficients may carry more energy than other coefficients. To be more specific, the variance in the transform coefficients can be defined as

(5.72)		

where, is the vector of mean values of the vector . Using (5.56a) in (5.72), we obtain

(5.73)

But,

(5.74)

where, is the vector of mean values of the vector . Therefore, (5.73) reduces to

(5.75)

Thus, the sum of the variances of the transform coefficients equals the sum of the variances of the elements of the input vector.

5.9.5 Hadamard Transform

The DFT and DCT transforms use sinusoids as basis functions. The Hadamrd transform uses rectangular basis functions. The kernel matrix of Hadamard transform for a 2-point sequence is defined as

(5.76)		

Therefore, the transformed vector can be determined to be

(5.77)

It is easy to verify that Hadamard transform is orthogonal. An interesting property of Hadamard transform is that higher order transforms can be generated recursively as follows: Given the NxN Hadamard kernel matrix, the 2Nx2N Hadamard kernel matrix is obtained by replacing the elements of the NxN matrix by the NxN kernel matrix. That is,

(5.78)			

A 4x4 Hadamard matrix is obtained using (5.76) in (5.78) and is described by

(5.79)

Example 5.10 Given an N-point sequence, compute its DCT and Hadamard transform. Also compute the inverse DCT and inverse Hadamard transform and compare the sequence obtained from the inverse transform with the input sequence. Also plot the percent of total energy contained in each transform coefficient against the sample index. Use MATLAB to solve the problem.

Solution: The input sequence used in this example is described by

	,

where , , , and . The DCT of the input sequence is obtained in MATLAB by calling the function dct with input argument x and output argument X_dct. The function call to compute the Hadamard transform is X_h = fwht(x). The corresponding inverse transforms are obtained using the functions idct and ifwht, respectively. The M-file to solve this problem is named Example5_10.m and is included in the CD. The energy of the input signal contained in each transform coefficient is the absolute square of the respective transform coefficient. The input sequence, its DCT, and IDCT are shown as stem plots in Figure 5.18 in the top, middle, and bottom plots, respectively. Similarly, Figure 5.19 shows the input sequence, Hadamard transform, and the inverse Hadamard transform as stem plots in the top, middle, and bottom plots, respectively. Finally, the percentage of total energy contained in each transform coefficient is plotted against the frequency index for the two transforms and is shown as bar chart in Figure 5.20. From the figure, we observe that the DCT contains most of the energy in a fewer transform coefficients than what the Hadamard transform does. That means that the DCT has a better energy compaction property than the Hadamard transform. The total energy of the input sequence is expressed as

	

It is also equal to the sum of the absolute square of the DCT as obtained from MATLAB and is given below.

	

For the Hadamard transform, it is found that

	

Place Figures 5.18 through 5.20 here

Figure 5.18 Discrete Cosine Transform: Top: Input sequence, Middle: The DCT of the input sequence, Bottom: IDCT of the DCT sequence in the middle plot

Figure 5.19 Discrete Hadamard Transform: Top: Input sequence, Middle: The Hadamard transform of the input sequence, Bottom: Inverse Hadamard transform of the Hadamard transform sequence in the middle plot

Figure 5.20 Percentage of total energy compacted in each Transform coefficient: Top: DCT, Bottom: Hadamard Transform
[bookmark: _GoBack]

Summary

The DFT plays an important role in digital signal processing. We defined the N-point DFT of a sequence and established its relationship to the discrete-time Fourier Transform. Some useful properties of DFT were described and some examples worked out to elucidate the usefulness of these properties. Circular convolution was defined and we showed how it can be computed using the DFT. Since LTI discrete-time systems employ linear convolution, we showed how linear convolution could be accomplished via circular convolution. In processing real-time signals, one first acquires the signal in digital form and then processes it. In such cases, it is more meaningful to process the input signal as it evolves. To this end, we showed how linear convolution of such a real-time signal could be computed by segmenting the input sequence into smaller-length blocks and then circularly convolving the blocks. Two methods – overlap-and-add and overlap-and-save – were explained with examples. We introduced the concept of unitary and orthogonal transforms. In fact DFT is a unitary transform. Two orthogonal transforms, namely DCT and Hadamard transforms, were introduced. These transforms play an important role in speech and image data compression as they compact the total energy in the input sequence or image into the transform coefficients in an unevenly manner. We will illustrate the energy compaction property of unitary and orthogonal transforms in a later chapter. In the next chapter we will deal with the design of IIR digital filters.

References

1. N. Ahmed, T. Natarajan, and K.R. Rao, Discrete cosine transform, IEEE Trans. on Computers, C-23, pp. 90-93, January 1974.
2. R. Ansari, An Extension of the discrete Fourier transform, IEEE Trans. On Circuits & Systems, CAS32, pp. 618-619, June 1985.
3. S. Bagchi and S.K. Mitra, Nonuniform Discrete Fourier Transform and its Signal Processing Applications, Kluwer Academic Publishers, Norwell, MA, 1998.
4. M. Bellanger, Digital Processing of Signals: Theory and Practice, Wiley, New York, NY, 3rd edition, 2000.
5. R.E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1985.
6. W.T. Cochran, et al., What is the fast Fourier transform, Proc. IEEE, 55 (10), pp. 164-174, 1967.
7. J.W. Cooley and J.W. Tukey, An Algorithm for the machine calculation of complex Fourier series, Math. Computation, 19, pp. 297-301, 1965.
8. J. Hadamard, Resolution d’une question relative aux determinants, Bull. Sci. Math., Ser. 2(17), Part I, pp. 240-246, 1893.
9. M.J. Narasimha and A.M. Peterson, On the computation of the discrete cosine transform, IEEE Trans. Comm., COM-26 (6), pp. 934-936, 1978.
10. S. Oraintara, Y-J Chen, and T.Q. Nguyen, Integer fast Fourier transform, IEEE Trans. on Signal Processing, 50, pp. 607-618, March 2002.

Problems

1.

If the convolution , where and are both periodic with period N, show that is also periodic with period N.

2. Determine the N-point DFT of x[n] = αn, 0 ≤ n ≤ N-1.

3.
Determine the 5-point DFT of .
4. Show that the circular convolution is a) commutative, and b) associative.

5. Let {x[n]} = {-3, 2, -1, 4} and {h[n]} = {1, 3, 2, -2} be two length-4 sequences for 0 ≤ n ≤ 3. Compute the circular convolution of x[n] and h[n] using the matrix equation.

6.
Let x[n] and X[k] be the N-point DFT pairs. Find the sequence whose DFT is given by , where m1 and m2 are positive integers less than N.

7. Find the N-point DFT of the sequence .

8. If is the DFT of the sequence , then express the 2N-point DFT of the sequence .

9. Let be the DFT of the sequence . Determine the MN-point DFT of the sequence in terms of .

10. Let be an N-point sequence whose DFT is with N even. If , show that .

11. What is the DFT of the sequence if and form a DFT pair with N even.

12. The circular cross correlation of the two N-point sequences and is defined as . Determine in terms of the DFTs of and .

13. Consider the a sequence with its N-point DFT denoted by . Let , where it is assumed that N is divisible by 3. Find the point DFT of in terms of .

14. Given an N-point sequence , define a zero-padded sequence . Express the 2N-point DFT in terms of .

15. We want to compute the linear convolution of a length-35 filter sequence with an input sequence of length 2000. (a) Determine the smallest number of DFTs and IDFTs needed to compute the linear convolution using the overlap-add method. (b) Repeat (a) for overlap-save method.

[Type text]	[Type text]	[Type text]
1
Author: K.S. Thyagarajan. Prohibited from distribution without the author’s permission.		
Microsoft_Equation1.bin

image2.wmf
]

[

~

n

x

Microsoft_Equation2.bin

image3.wmf
]

[

~

n

h

Microsoft_Equation3.bin

image4.wmf
]

[

~

n

y

Microsoft_Equation4.bin

image5.wmf
4

0

,

25

.

0

]

[

£

£

=

n

n

x

n

Microsoft_Equation5.bin

image6.wmf
[

]

[

]

N

N

m

k

X

m

k

X

k

Y

2

1

]

[

-

+

-

=

b

a

Microsoft_Equation6.bin

image1.wmf
å

-

=

-

=

1

0

]

[

~

]

[

~

]

[

~

N

k

k

n

h

k

x

n

y

