
Supplemental Material.
Visual Psychophysics for Making Face Recognition Algorithms More

Explainable

Contents

1 Detailed “herder” Algorithm 2
1.1 Foundation: Similarity Matrix as a Graph . 2
1.2 Similarity Matrix to Graph Representation . 2
1.3 Marking Identities for Removal with a Minimum Spanning Tree . 3
1.4 Resulting Graph, Similarity Matrix, and “sheep” . 4

2 Selected “sheep” 2D Experiments 5

3 Selected “sheep” 3D Experiments 5

4 Parameters of Image Transformations 5

5 Supplemental Figures 2D Experiments (Plots) 6

6 Supplemental Figures 3D Experiments (Plots) 7

7 Supplemental Figures Weight Perturbation Experiments (Plots) 9

1

1 Detailed “herder” Algorithm
In this section, we describe the details of the “herding” algorithm described in Sec. 3 of the main paper. The predominant
attention of the reader should be on Supp. Figs. 1-7 and the accompanying captions, as the main text of this section will
describe the high-level motivation for each step in the process. Supp. Sec. 1.1 will introduce the reader to the foundation of
treating similarity matrices in a graph theory context. In Supp. Secs. 1.2-1.4, we describe the complete procedure using a
similarity matrix produced with the familiar additive color wheel. By the end of Supp. Sec. 1.4, the reader will understand the
theoretical foundation and procedure to “herd” sheep from the remaining biometric menagerie as described in Sec. 3 of the
main paper.

1.1 Foundation: Similarity Matrix as a Graph
Before one can understand and appreciate the full “herding” procedure, it is necessary to understand the basics of graph theory
and the place of a similarity matrix within it. Supp. Fig. 1 compares an adjacency matrix with a similarity matrix and shows
they are, for all intents and purposes, one and the same. While Supp. Fig. 1 establishes similarity matrices as adjacency
matrices, Supp. Fig. 2 displays the unique properties the similarity matrix has over the adjacency matrix, which enables us to
“herd” sheep from the biometric menagerie.

Figure 1. Panel (a) is a basic but standard undirected weighted adjacency matrix and its graphical representation. Although similarity
matrices are rarely (if ever) thought of as adjacency matrices, similarity matrices can be operated on and treated as adjacency matrices. Thus,
panel (b) contains a typical similarity matrix and its undirected weighted graphical representation. A thresholded similarity matrix produces
a similarity matrix containing 1s (matches) and 0s (non-matches). Like the pre-thresholded similarity matrix, the thresholded matrix can be
thought of as a graph or more specifically an undirected unweighted graph. Panel (c) contains an example thresholded similarity matrix and
its graphical representation.

Figure 2. The three basic types of graph edges from thresholded similarity matrices. Panel (a) is the graph for when there are no false
matches and no false non-matches. The solid edges represent the true matches and dashed edges represent the true non-matches. Notice, if
the thresholded similarity matrix is an identity matrix, this would be its graph representation. Panel (b) is a graph with two solid edges
that are supposed to be dashed, making them two false matches instead of true non-matches. Panel (c) has one false non-match where the
connected edge of the vertex should be solid but is dashed. In both panels (b) and (c), red highlighted edges indicate the false edges. It is
easy to see in panel (b) and (c) that removing the green highlighted vertices would eliminate the false edges. The need to remove the green
vertices in order to eliminate the red edges forms the foundation for the complete “herding” algorithm.

1.2 Similarity Matrix to Graph Representation
To make the algorithm easier to follow and visualize, we use the additive color wheel as identities rather than faces. Supp.
Figs. 3-4 reintroduce the properties described in Supp. Fig. 2 — using the additive color wheel — to describe the biometric
menagerie in the context of the graph representation. The reader should note, although visually speaking we use the exact color

wheel (plus black), the entries in the similarity matrix in Supp. Fig. 3 were altered for the purposes of covering all the cases in
the algorithm. For realism, we chose white and black identities as the more problematic identities. Because white is the center
of the color wheel, it could potentially be too similar or too different to any of the other colors. While white is on the color
wheel, we chose black to be an example of an identity which matches poorly with itself because it is not on the color wheel.

Figure 3. A similarity matrix using the additive color wheel to represent eight identities. Although in the main paper we focus on face
identities, in theory, these colors could represent any type of identity such as fingerprints, iris, etc. The values provided in this similarity
matrix predominantly come from the RGB representational vector for each color, with a few slight manual alterations to demonstrate the
functionality of the described algorithm, e.g., it is unlikely that the black color identity would score so low – relatively speaking – when
compared to itself, but by manually altering that comparison value, the matrix provides a possible false non-match for Supp. Fig. 4. As such,
the values in the similarity matrix are for demonstration only and have minimal validity within the context of the actual additive color wheel.

Figure 4. Three graphs produced using the threshold t = 0.47 on the additive color wheel similarity matrix from Supp. Fig. 3. Panel (a)
contains all of the match edges produced. Panel (b) contains all of the true match edges. Panel (c) contains the false match edges and false
non-match edges (missing edges) from (a) — it is equivalent to the thresholded additive color wheel similarity matrix XORed with the
identity matrix. The importance of panel (c) is found in understanding that it contains all of the potential goats, lambs, and wolves. A naive
approach would opt to remove all the identities in panel (c) thinking the remaining identities would be sheep. Although, the assumption that
the remaining identities are sheep is correct, the naive approach fails to recognize that panel (c) also can (and likely does) contain sheep
which one should not wish to remove. The algorithm described in Supp. Sects. 1.3-1.4 and Supp. Figs. 5-7 uses the graph in panel (c) to
identify and remove non-sheep.

1.3 Marking Identities for Removal with a Minimum Spanning Tree
From Supp. Fig. 4, one can see which identities to remove, however as the number of identities linearly increases, the number
of edges potentially increase quadratically and thus it would be extremely cumbersome to visually or manually determine
which identities should be removed. Accordingly, the focus of this section’s figures is to describe the technique for efficiently

and deterministically marking the minimum number of identities for removal, such that absolutely no false matches and
non-matches exist within the remaining identities — ensuring all remaining identities meet the criteria of being sheep.

This procedure is broken up into two primary steps. The first step (Supp. Fig. 5) is the process of appropriately weighting
vertices to ensure that in the second step (Supp. Fig. 6), the minimum spanning tree (MST) algorithm used — Kruskal’s
algorithm — marks the optimal identities for removal. Recall that an MST is a spanning tree (a tree that includes all vertices)
that has the minimal possible sum of weights along the edges of the tree. Thus, by properly weighting the edges in the first
step we ensure identities that are more problematic will be more likely marked for removal.

Returning to the first step, it is important to know that Kruskal’s algorithm does not consider weighted vertices, so weighting
the vertices and computing the MST will not provide what is needed. To combat this issue, we weight the vertices and invert
the graph — meaning vertices become edges and edges become vertices. This new graph is what we perform Kruskal’s
algorithm on in step two, rather than the original graph. Supp. Figs. 5 and 6 work in conjunction with each other to demonstrate
the marking of non-sheep identities from the biometric menagerie.

Figure 5. The process of inverting the graph and ensuring the graph is prepared for the minimum spanning trees (MST) process described in
Supp. Fig. 6. The most important panel in this figure is panel (c). Panel (c) is the inverted graph of Supp. Fig. 4(c) with the two adjustments
from panel (a) and panel (b). Panel (a) contains weighted vertices that become weighted edges in panel (c). Each vertex is weighted by its
degree (number of connecting edges) and negated. The assumption is that the higher number of edges a vertex has the more problematic
the identity. Negating the value enforces vertices with the highest degree to have the lowest value in the inverted graph, ensuring the MST
algorithm will give it favor. Panel (b) is primarily to provide visual labels to be used in panel (c), however one will notice edge A is not
present in panel (c). Although the MST algorithm used will handle loops like A, they are easy to identify and removed before inversion. Any
loop that is present and then removed is a goat within the biometric menagerie. The weights in panel (a), the edge labels in panel (b), and the
vertex colors in both correspond to the weights, labels, and colors in panel (c).

Figure 6. Three minimum spanning trees (MSTs) determining which identities (edge colors) should be removed (dashed edges). Panels (a)
and (b) show two of the three possible MSTs using the weighted graph in Supp. Fig. 5(c). Panel (c) is a suboptimal MST resulting from not
weighting the edges with the negative degree of the corresponding vertices in Supp. Fig. 5(a) — notice that three identities are marked for
removal instead of two. One property of the Kruskal’s algorithm used is it only returns one MST and not all possibilities. However, this is
perfectly valid for our purposes as our goal here is only to remove the least possible number of identities rather than an exhaustive list of
combinations. For example, panel (a) is an MST that marks white and blue color identities for removal whereas panel (b) marks white and
magenta color identities. If the graph in Supp. Fig. 5(c) is not connected, Kruskal’s algorithm will produce a minimum spanning forest
where each connected component is the equivalent of an MST — each sub-MST is valid for marking identities for removal. Finally, marked
color identities are either lambs or wolves — it is impossible to distinguish between them with this procedure. However, we only care about
their removal and thus distinguishing lambs from wolves is not necessary.

1.4 Resulting Graph, Similarity Matrix, and “sheep”
At this point, it has been determined which identities should be removed to remove as few as possible while eliminating all
false matches and non-matches, so this section does not provide any new steps in the algorithm rather it highlights the resulting

graph and corresponding similarity matrix. Notice that Supp. Fig. 7 contains the remaining identities for the chosen score
threshold t = 0.47. However, this can be repeated for any threshold. Each threshold will produce a different set of sheep.
Thus, it is important to use the entire “herding” procedure described in the main paper Sect. 3 to find the optimal threshold that
“herds” the largest number of sheep.

Figure 7. Panel (a) is the graph from Supp. Fig. 4(a) with identities marked for removal in Supp. Fig. 5 (vertices with loops / false
non-matches) and identities marked in Supp. Fig. 6(a) (vertices that caused false matches). Panel (b) is the resulting and final graph after
problematic vertices were removed. Notice, no false matches or non-matches remain. Had we used Supp. Fig. 6(c) as the marking procedure,
only four vertices would remain instead of five. Panel (c) is the final similarity matrix which contains all of our sheep and no other biometric
menagerie identity type.

2 Selected “sheep” 2D Experiments
Each face recognition algorithm required either an aligned face or an unaligned aligned face. FaceNet, OpenFace, and
slmsimple use images from the aligned LFW published dataset. OpenBR and VGG-Face use images from the unaligned LFW
dataset. See spreadsheet 2D-Sheep.xlxs for the complete list of initial input images that were selected as sheep.

3 Selected “sheep” 3D Experiments
Like in the 2D experiments, each face recognition algorithm required either an aligned face or an unaligned face. However,
with FaceGen all faces were by default aligned. For the algorithms that required alignment, we cropped the 3D images down
to just the face for consistency with the published 2D alignment. For the algorithms that did not require alignment, we cropped
to the entire head. See spreadsheet 3D-Sheep.xlxs for the complete list of initial input images that were selected as sheep.

4 Parameters of Image Transformations
We used the following transformations for our perturbation parameters: Gaussian blur, salt & pepper noise, sharpness, contrast,
color, brightness, rotation, scale, linear occlusion, pink noise, and brown noise. To perturb using Gaussian blur, we used
OpenCV’s GaussianBlur module [1], and set the blur kernel σ in the range [0, 15]. Salt & pepper noise utilized the util
module from scikit-image [2], and a random configuration of noise was selected as a percentage of the total image pixels.
Sharpness, contrast, color, and brightness were controlled using the ImageEnhance module of PIL [3]. The Sharpness
was chosen within the range [0.0, 2.0]. For both the Contrast and Brightness functions, the controlling parameter was
set between [0.0, 15].

There are three non-standard transformations (not a single API call), linear occlusion, pink noise, and brown noise. The
linear occlusion technique is the method for linear occlusion described in RichardWebster et al. [4]. Pink and Brown noise use
a Python implementation of [5] but modified to be a percent of noise added to base pixel value. (noise * percent * pixel + pixel
). We defined β input parameters described in [5] as β = 1 for pink noise and β = 2 for brown noise — both recommended in
the comments of the referenced algorithm.

5 Supplemental Figures 2D Experiments (Plots)

Figure 8. 2D item-response curves for transformation functions: noise, occlusion, and blur

Figure 9. 2D item-response curves for transformation functions: ImageEnhance module of PIL [3]. Saturation omitted because of
uninformative results.

6 Supplemental Figures 3D Experiments (Plots)

Figure 10. 3D item-response curves for FaceGen Expression

Figure 11. 3D item-response curves for FaceGen Modifier. FaceGen images created with Modifier:Brow* omitted because of
uninformative results.

7 Supplemental Figures Weight Perturbation Experiments (Plots)

Figure 12. 6% Weight Perturbation item-response curves for transformation functions: noise, occlusion, and blur

Figure 13. 6% Weight Perturbation item-response curves for transformation functions: ImageEnhance module of PIL [3]. Saturation
omitted because of uninformative results.

References
[1] G. Bradski, “OpenCV,” Dr. Dobb’s Journal of Software Tools, 2000. 5

[2] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image
contributors, “scikit-image: image processing in Python,” PeerJ, vol. 2, p. e453, 2014. 5

[3] Pillow (PIL Fork), “https://pillow.readthedocs.io/en/3.0.0/index.html,” Accessed: 2016-11-05. 5, 6, 9

[4] B. RichardWebster, S. E. Anthony, and W. J. Scheirer, “Psyphy: a psychophysics driven evaluation framework for visual recognition,”
arXiv preprint arXiv:1611.06448, 2016. 5

[5] J. Yearsley, “spatialpattern,” May 2004. [Online]. Available: https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/
submissions/5091/versions/2/previews/spatialPattern.m/index.html?access key= 5

https://pillow.readthedocs.io/en/3.0.0/index.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/5091/versions/2/previews/spatialPattern.m/index.html?access_key=
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/5091/versions/2/previews/spatialPattern.m/index.html?access_key=

